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1. Introduction

The last twenty years, supersymmetric solutions of the type I supergravities and their

geometries have been the focus of intensive investigation because of their applications in

type I and heterotic superstrings, see e.g. [1]–[21]. Type I supergravities have three types

of Killing spinor equations associated with the vanishing of the supersymmetry variations

of the gravitino, dilatino and gaugino. The gravitino Killing spinor equation is a parallel

transport equation of a metric connection with skew-symmetric torsion, ∇̂, where the tor-

sion is the NS⊗NS or R⊗R three-form field strength in the heterotic1 or type I superstrings,

respectively. So the holonomy of ∇̂, hol(∇̂), is contained in Spin(9, 1). The existence of par-

allel spinors requires that hol(∇̂) must be a subgroup of their isotropy group in Spin(9, 1).

Therefore either the Killing spinors have a non-trivial (proper) stability Lie subgroup in

Spin(9, 1) or the stability subgroup is {1} and the curvature R̂ of ∇̂ vanishes, R̂ = 0. The

isotropy or stability subgroups, up to a discrete identification, of Majorana-Weyl spinors

in Spin(9, 1) are

Spin(7) ⋉ R8 (1) ⊃ SU(4) ⋉ R8 (2) ⊃ Sp(2) ⋉ R8 (3) ⊃ (SU(2) × SU(2)) ⋉ R8 (4)

⊃ SU(2) ⋉ R8 (5) ⊃ U(1) ⋉ R8 (6) ⊃ R8 (8) ,

Spin(7) ⋉ R8 (1) ⊃ G2 (2) ⊃ SU(3) (4) ⊃ SU(2) (8) ⊃ {1} (16) , (1.1)

where in parenthesis we have denoted the number of linearly independent invariant spinors.

The maximal compact subgroups of (1.1) have appeared before, see [26], in the context

of supersymmetric M-brane configurations. Lists of isotropy groups of Spin(9, 1) and

Spin(10, 1) spinors in various representations2 can be found in [27]. Most of above groups

have also appeared in [28]. To our knowledge the concise list of isotropy groups of Spin(9, 1)

Majorana-Weyl spinors has been given for the first time in this paper and a proof that (1.1)

is complete can be found in appendix B. As can easily be seen, there are two classes of

stability subgroups characterized by their topology. Moreover the isotropy group of 9 or

more spinors is {1}. Therefore backgrounds with more than 8 parallel spinors necessarily

have R̂ = 0.

The dilatino Killing spinor equation is not amenable to such a straightforward Lie

algebraic interpretation. This has been one of the obstacles to find the geometry of all

supersymmetric type I backgrounds. Nevertheless much progress has been made to sys-

tematically understand the geometry of supersymmetric type I backgrounds. In [28], the

Killing spinor equations of type I supergravities have been solved, using the spinorial ge-

ometry method of [29], under the assumption that all the ∇̂-parallel spinors are Killing,

i.e. all solutions of the gravitino Killing spinor equation are also solutions the dilatino one,

see also [30] for an application to the common sector.

The supersymmetric backgrounds with R̂ = 0 have been examined in [31]. In par-

ticular, R̂ = 0 and dH = 0 imply that the spacetime is a Lorentzian metric Lie group.

1Similar geometries appear in the context of (1 + 1)- and (1+0)-dimensional supersymmetric sigma

models, see e.g. [22 – 25].
2The isotropy groups of spinors are representation sensitive. There are many more isotropy groups that

appear for Spin(9, 1) Majorana spinors, and the Spin(10, 1) Majorana spinors have different isotropy groups.
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These groups have been classified in [32, 31], based on some earlier work on Lorentzian

Lie groups [33]. So, the class of supersymmetric backgrounds that remains to be examined

is that for which some of the ∇̂-parallel spinors do not solve the dilatino Killing spinor

equation and R̂ 6= 0.

In this paper, we classify the geometry of all supersymmetric type I backgrounds. This

is done by completing the program, i.e. by solving the Killing spinor equations for those

backgrounds for which only some of the ∇̂-parallel spinors solve the dilatino Killing spinor

equation. We shall find that the Killing spinor equations allow for backgrounds for any

N ≤ 8. We have carried out the classification using a combination of the spinorial geometry

method of [29] and its recent adaptation to nearly maximally supersymmetric backgrounds

proposed in [34, 35]. The first part of the task is to find the ∇̂-parallel spinors and to solve

the gravitino Killing spinor equation. This has been done in [28] and the parallel spinors

have been identified in most cases. We give the parallel spinors of the SU(2) ⋉ R8 and

U(1) ⋉ R8 cases that have not been included in [28].

Next it remains to identify the Killing spinors of a supersymmetric background, i.e. those

∇̂-parallel spinors that solve the dilatino Killing spinor equation as well. Clearly for a back-

ground with N Killing spinors and L ∇̂-parallel spinors, 1 ≤ N ≤ L. The backgrounds with

N < L are referred as “descendants”. The N Killing spinors of a supersymmetric back-

ground can span any N -plane in the L-dimensional vector space P of ∇̂-parallel spinors.

Generically there are infinitely many choices of N -planes in an L-dimensional vector space,

so at first sight it appears that the program cannot be carried out. However, according

to the spinorial geometry method of [29], the Killing spinors should be identified up to a

gauge transformation of the Killing spinor equations. So not all choices of N -planes give

rise to different spacetime geometries. In particular any two N -planes that are related by a

Spin(9, 1) transformation which preserves the space of parallel spinors give rise to the same

spacetime geometry and fluxes up to a Lorentz transformation. Given that the solutions

(ǫ1, . . . , ǫL) of the gravitino Killing spinor equation span P, ∇̂ǫi = 0, we shall identify the

Killing spinors up to transformations of the group

Σ(P) = Stab(P)/Stab(ǫ1, . . . , ǫL) , (1.2)

where Stab(P) is the subgroup of Spin(9, 1) which preserves the L-dimensional vector space

P and Stab(ǫ1, . . . , ǫL) is the subgroup of Spin(9, 1) which preserves each (ǫ1, . . . , ǫL) indi-

vidually. We shall see that Σ(P) is the product of a Spin group and an R-symmetry group

of an appropriate lower-dimensional supergravity. It turns out that after an appropriate

identification using Σ(P), there is a finite number of distinct N -planes, for N ≤ L/2, and so

the classification can be completed. In particular the Killing spinors of all the descendants

can be identified. For N > L/2, one can use a similar argument to specify the normals to

the Killing spinors. As in [34], these can be used to determine the Killing spinors. The

dilatino Killing spinor equation can again be solved.

The Killing spinors of all descendants can be characterized by two groups. One is the

isotropy group of the parallel spinors we have already mentioned. The other is the isotropy

group of the Killing spinors StabΣ(ǫ1, . . . , ǫN ) in Σ(P). In the description of StabΣ, it

is sufficient to consider N ≤ L/2. This is because for N > L/2, it is more convenient

– 5 –
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to consider the analogous groups for the normals to the Killing spinors. However, these

coincide with those of the Killing spinors for N ≤ L/2.

A special case are the descendants of backgrounds with L = 16 parallel spinors. These

backgrounds are parallelizable, R̂ = 0. In this case, our method reproduces the results

of [31]. A summary of the geometric properties of all cases can be found at the conclusions.

We also investigate the conditions on the descendants imposed by the Bianchi identities

and field equations of the type I supergravities. For Stab(ǫ1, . . . , ǫL) non-compact, L ≤ 8,

it turns out that dH = 0 and the field equations of type I supergravities imply that the

descendants exist if and only if the holonomy of ∇̂, hol(∇̂), reduces to a proper subgroup of

Stab(ǫ1, . . . , ǫL), i.e. hol(∇̂) ⊂ Stab(ǫ1, . . . , ǫL). In particular, if one insists that hol(∇̂) =

Stab(ǫ1, . . . , ǫL), then under the same conditions, the gravitino Killing spinor equation

implies the dilatino one and so the only backgrounds that occur are those for which N = L,

i.e. those investigated in [28]. For Stab(ǫ1, . . . , ǫL) compact, there are descendants for which

hol(∇̂) = Stab(ǫ1, . . . , ǫL). Moreover, the gravitino Killing spinor equation implies the

dilatino one provided some conditions are satisfied in addition to those implied by dH = 0,

the field equations and hol(∇̂) = Stab(ǫ1, . . . , ǫL).

The gaugino Killing spinor equation, Fǫ = 0, can also be understood in a similar way

to that of the gravitino Killing spinor equation. In particular, the spacetime indices of

the gauge field strength F can be interpreted as taking values in spin(9, 1), so either the

spinors ǫ have a non-trivial stability subgroup in Spin(9, 1) or the gauge connection is flat,

F = 0. We shall not present a detailed analysis of the conditions on F implied by the

dilatino Killing spinor equation. This is because the geometry of spacetime is not affected

by the solutions of the gaugino Killing spinor equation.3 Of course one can consider the

possibility that some of the solutions of the gravitino and dilatino Killing spinor equations

solve the gaugino one as well. However, it is more usual to take that either all parallel

spinors solve the gaugino Killing spinor equation or that all solutions of the gravitino and

dilatino Killing spinor equations also solve the gaugino one. In all cases the solutions of the

gaugino Killing spinor equation can be deduced from those of the gravitino Killing spinor

equation.

This paper is organized as follows: In section two, we describe how the gauge symmetry

of the Killing spinors can be used to identify the Killing spinors of all supersymmetric type

I backgrounds. In sections three to five, we investigate the descendants of SU(4) ⋉ R8-,

Sp(2)⋉R8- and (SU(2)×SU(2))⋉R8-invariant parallel spinors and compare their geometry

to that of backgrounds for which all parallel spinors are Killing in each case. In sections

six and seven, we solve the Killing spinor equations, and those of their descendants, of

backgrounds with SU(2)⋉R8- and U(1)⋉R8-invariant parallel spinors. In section eight, we

examine the Killing spinor equations of the descendants of R8-parallel spinors. In section

nine, we use the Bianchi identities and the field equations to investigate the conditions

3The gauge field may contribute in the modification of the Bianchi identity of H due to the anomaly

cancellation mechanism, and so it affects the spacetime geometry only in the case that dH 6= 0. However

to lowest order in α′, dH = 0. If the anomaly correction is included, then the sigma model two-loop

contribution to the field equations should be taken into account, see e.g. [10]. In any case, most of our

analysis is independent of such assumptions on dH .

– 6 –
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under which the holonomy of ∇̂ reduces to a subgroup of the isotropy group of the parallel

spinors. We also present some applications. In sections ten, eleven and twelve, we solve the

Killing spinor equations of the descendants of backgrounds with G2-, SU(3)- and SU(2)-

invariant parallel spinors, respectively. We also investigate the reduction of the holonomy

and its consequences in each case. In section thirteen, we investigate the parallelizable

backgrounds using the methods developed in this paper and confirm the results of [32, 31],

and in section fifteen we give our conclusions. In appendix A, we summarize some aspects

of the geometry of manifolds which admits ∇̂-parallel spinors and outline some of their

geometric properties. In appendix B, we show that the list presented in (1.1) is complete,

and in appendix C, we summarize some results on a group representation that we have

used to investigate an N = 4 descendant of SU(2)-invariant parallel spinors. In appendix

D, we give the additional parallel spinor bi-linears for the SU(2)⋉ R8 and U(1)⋉ R8 cases.

2. Preliminaries

The Killing spinor equations of type I and heterotic supergravities are

D(e,H)Aǫ = ∇̂Aǫ = 0 , A(e,H,Φ)ǫ = (ΓA∂AΦ − 1

12
HABCΓABC)ǫ = 0 (2.1)

where e is a frame, Φ is the dilaton, H is the NS⊗NS three-form field strength and

∇̂BY A = ∇BY A +
1

2
HA

BCY C , (2.2)

is a metric connection with torsion H. The spinors ǫ are in the positive chirality Majorana-

Weyl representation S+ of Spin(9, 1) which in the conventions of [28] are represented by

even-degree forms. (We use the conventions of [28] throughout this paper.)

The Lie subgroups of Spin(9, 1) that leave some spinors invariant have been listed

in (1.1). We collectively denote them with Stab(ǫ1, . . . , ǫL) for L = 1, 2, 3, 4, 5, 6, 8 and

16. These stability subgroups have the property that they leave every individual spinor

invariant. Since the holonomy of ∇̂ is contained in Spin(9, 1), the gravitino Killing spinor

equation has solutions provided that

hol(∇̂) ⊆ Stab(ǫ1, . . . , ǫL) . (2.3)

If Stab(ǫ) = {1}, then the curvature of ∇̂ vanishes, R̂ = 0. This together with the closure

of H, dH = 0, imply that the spacetime is a Lorentzian metric Lie group.

To solve the dilatino Killing spinor equation, we first assume that we have a solution

of the gravitino Killing spinor equation, i.e. we have a given number of parallel spinors

spanning a subspace P in the space of spinors S+. Then we try to find the conditions for

which some of the parallel spinors solve the dilatino Killing spinor equation as well. If N

is the number of Killing spinors, then necessarily they are at most as many as the parallel

∇̂-spinors, so

N ≤ dim P = L . (2.4)

– 7 –
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Let {ηi} be a basis in the space of parallel spinors, ∇̂ηi = 0, P = R < η1, . . . , ηL >.

The Killing spinors can now be written as

ǫr =

L
∑

i=1

friηi , (2.5)

where f is a matrix of spacetime functions of rank N . Since ǫr must remain ∇̂-parallel and

{ηi} is a basis, it is easy to show that in fact f is a constant matrix. Let K be the N -plane

in P spanned by the Killing spinors, K = R < ǫ1, . . . ǫN >.

Next suppose that ℓ ∈ Spin(9, 1) and that it preserves4 P, ℓP ⊆ P. Then consider ℓǫr

and observe that

D(eℓ−1

,Hℓ−1

)ℓǫr = ℓD(e,H)ǫr = 0 ,

A(eℓ−1

,Hℓ−1

,Φℓ−1

)ℓǫr = ℓA(e,H,Φ)ǫr = 0 , (2.6)

where eℓ−1

,Hℓ−1

,Φℓ−1

are the Lorentz transformed frame, H and dilaton with respect to the

inverse ℓ−1 Lorentz transformation5 associated with ℓ ∈ Spin(9, 1). Therefore the spinors

ℓǫr are also solutions of the Killing spinor equations up to a Lorentz rotation of the frame

and the fluxes. Since we identify backgrounds related by frame Lorentz transformations,

one concludes that the N -planes K and ℓK give rise to the same spacetime geometry and

fluxes. Thus to classify the N -supersymmetric backgrounds, it is sufficient to find all

N -planes in P up to transformations in Spin(9, 1) that preserve P.

To continue we have to identify the subgroup Σ(P) ⊆ Spin(9, 1) which preserves P,

where P = R < η1, . . . , ηL >. As we have mentioned in the introduction, first define the

stability subgroup of P as

Stab(P) = {ℓ ∈ Spin(9, 1) s.t. ℓP ⊂ P} (2.7)

Clearly Stab(η1, . . . ηL) ⊆ Stab(P). In fact Stab(η1, . . . ηL) is a normal subgroup. Then we

define

Σ(P) = Stab(P)/Stab(η1, . . . ηL) . (2.8)

Σ(P) may act non-trivially on the space of parallel spinors preserving the subspace spanned

by them and takes the rôle of the gauge group in the context of the spinorial geometry

approach to solving the Killing spinor equations. The groups Σ(P) are summarized in

table 1. It can be easily seen that they are products of the type Σ(P) = Spin(d, 1) × R.

Such groups are reminiscent of the gauge groups of (d + 1)-supergravities, where R is

the R-symmetry group. It may be possible to make this correspondence more precise by

considering compactifications of type I supergravity on supersymmetric backgrounds with

an appropriate Σ(P) group.

4The assumption ℓP ⊆ P can be relaxed but it is more convenient to consider only those ℓ that preserve

P .
5We denote with the same symbol the element ℓ ∈ Spin(9, 1) and its projection on the Lorentz group.

– 8 –
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L Stab(ǫ1, . . . , ǫL) Σ(P)

1 Spin(7) ⋉ R8 Spin(1, 1)

2 SU(4) ⋉ R8 Spin(1, 1) × U(1)

3 Sp(2) ⋉ R8 Spin(1, 1) × SU(2)

4 (SU(2) × SU(2)) ⋉ R8 Spin(1, 1) × Sp(1) × Sp(1)

5 SU(2) ⋉ R8 Spin(1, 1) × Sp(2)

6 U(1) ⋉ R8 Spin(1, 1) × SU(4)

8 R8 Spin(1, 1) × Spin(8)

2 G2 Spin(2, 1)

4 SU(3) Spin(3, 1) × U(1)

8 SU(2) Spin(5, 1) × SU(2)

16 {1} Spin(9, 1)

Table 1: In the columns are the numbers of parallel spinors, their isotropy groups and the Σ(P)

groups, respectively. The Σ(P) groups are a product of a Spin group and an R-symmetry group.

To see how Σ(P) is used, let us first choose P and suppose that only one of the ∇̂-

parallel spinors also solves the dilatino Killing spinor equation, say ǫ and so N = 1. The

spinor ǫ can be expressed as a linear combination of a basis of parallel spinors ǫ = fiηi. As

we have explained, ǫ and ℓǫ, ℓ ∈ Σ(P), give rise to the same spacetime geometry. So the

Killing spinors which may lead to different spacetime geometries are labeled by the orbits,

OΣ(P)(P), of Σ(P) in P. Hence, to find all N = 1 backgrounds with L ∇̂-parallel spinors,

it suffices to choose a single representative from each orbit of Σ(P) in P. In general these

representatives depend on as many different parameters as the number of deformations

that preserve the orbit. In particular the representatives of generic orbits, i.e. orbits of

maximal co-dimension, the number of parameters is equal to the co-dimension of the orbit

in P. The Killing spinor equations are linear, so the Killing spinor is specified up to an

overall scale. As a result, the number of independent parameters that the Killing spinor

depends on is at most the dimension of the deformations that preserve the associated orbit.

The number of parameters of representatives of generic orbits is either codimOΣ(P)(P) or

codimOΣ(P)(P)−1 depending on whether Σ(P) contains a scale generator. In most generic

cases, it turns out that codimO is either zero or one and so we have to specify a single

direction.

To continue, we proceed inductively. Let K be the N -plane in P spanned by the first

N Killing spinors,

0 → K → P → P/K → 0 , (2.9)

K = R < ǫ1, . . . , ǫN >. To choose the (N +1)-th Killing spinor, we first consider Stab(K) ⊆
Σ(P) that preserves K, i.e.

Stab(K) = {ℓ ∈ Σ(P) , ℓK ⊆ K} . (2.10)

The strategy we adopt is to use Stab(K) to choose the (N + 1)-th Killing spinor. For

this, first choose a spinor ǫN+1 which is linearly independent from those in K. Since the
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Killing spinor equations are linear, it suffices to choose ǫN+1 up to elements in K. Thus

ǫN+1 can be thought of as an element in P/K. Moreover Stab(K) acts on P/K preserving

the plane of the first N Killing spinors. Using again the identification of supersymmetric

backgrounds under frame Lorentz rotations, the (N + 1)-th Killing spinor ǫN+1 can be

chosen to be a representative of the orbits OStab(K)(P/K) of Stab(K) in P/K. Again

the number of independent parameters that ǫN+1 has depends on the type of orbit it

represents. If it is a generic orbit, the number of parameters is either codimOStab(K)(P/K)

or codimOStab(K)(P/K) − 1 depending on whether Stab(K) acts with or without a scale

transformation on P/K.

The above described procedure works well for all 1 ≤ N ≤ L/2. For N > L/2 in some

cases it is more convenient, instead of determining the Killing spinors up to Spin(9, 1)

transformations, to specify their normals. For this first recall that we have chosen P ⊆ S+,

where S+ is the positive chirality Majorana-Weyl representation of Spin(9, 1). The dual of

(S+)⋆ is identified with S−, the negative chirality Majorana-Weyl spinors, via the Majorana

Pin-invariant inner product B, i.e. S− = B((S+)⋆), see [28, 34] for details. Define Q =

B(P⋆). Next, Spin(9, 1) acts on S− and so as before define Σ(Q). The hyperplane of Killing

spinors of N = L − 1 supersymmetric backgrounds has a unique normal in Q. Using the

identification of supersymmetric backgrounds under frame Lorentz transformations and

an argument as above, backgrounds with distinct geometries are labeled by the orbits

OΣ(Q)(Q), i.e. by the choice of the normal ν up to gauge transformations that preserve

Q. The normal spinor is specified up to an overall scale, i.e. we need to specify only the

normal direction. Thus the number of parameters that the normal spinor has depends

on the type of orbit it represents. For generic orbits, the number of parameters is either

codimOΣ(Q)(Q) or codimOΣ(Q)(Q) − 1 depending on the way that Σ(Q) acts on Q. Then

the hyperplane of the Killing spinors is specified by the orthogonality condition

B(ν,K) = 0 . (2.11)

To continue, one proceeds inductively. First define N as the (L − N)-plane in Q spanned

by the first L−N normal spinors. To specify an additional Killing spinor up to a Spin(9, 1)

transformation, define the subgroup Stab(N ) ⊆ Spin(9, 1) that preserves N and consider

the sequence

0 → N → Q → Q/N → 0 . (2.12)

The (L − N + 1) normal spinor νL−N+1 is chosen to be linearly independent from the

first L − N normal spinors and it is specified up to elements in N . This is because the

(N − 1)-Killing spinors will span a hyperplane in K and so they will be always orthog-

onal to N . Thus νL−N+1 can be thought of as an element in Q/N . Using the identi-

fication of supersymmetric backgrounds under frame Lorentz transformations again, the

additional normal spinor can be chosen as a representative of the orbits OStab(N )(Q/N ).

The number of independent parameters of the new normal depend on the type of orbit it

represents. For generic orbits, the number of parameters is either codimOStab(N )(Q/N ) or

codimOStab(N )(Q/N )− 1. In turn the Killing spinors are determined by the orthogonality
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condition

B(N ,K) = 0 , (2.13)

where now N is spanned by all N − L + 1 normal spinors. As we have mentioned in

the introduction, we refer to the backgrounds with N supersymmetries, N < L, that

arise from a given set of Stab(ǫ1, . . . , ǫL)-invariant parallel spinors as “descendants” of

Stab(ǫ1, . . . , ǫL).

3. The descendants of SU(4) ⋉ R8

A (complex) basis6 in the space of parallel spinors can be chosen as

1 . (3.1)

Observe that Σ(P) = Spin(1, 1) × U(1), where the generator of Spin(1, 1) is Γ+− and the

generator of U(1) can be chosen as iΓ11̄. Observe that Spin(1, 1) = R∗. There is a single

descendant background with N = 1 supersymmetry. The dilatino Killing spinor equation

can be written as

A(1 + e1234) = 0 . (3.2)

We use the conventions of [28] to denote the spinors and forms that arise in the analysis that

follows. Note that the stability subgroup of the Killing spinor in Σ(P) is StabΣ(1+e1234) =

{1}.
The strategy we adopt to organize the solutions of the Killing spinor equations in all

cases is to first solve the gravitino Killing spinor equation. The conditions that arise are

the same for all descendants. Then the dilatino Killing spinor equation is solved for each

descendant and the solutions are expressed in representations of Stab(ǫ1, . . . ǫL), i.e. the

isotropy group of the parallel spinors.

3.1 Geometry of the gravitino Killing spinor equation

The solution of the gravitino Killing spinor equation can be read off from the results of [28].

The conditions that this imposes on the geometry is that hol(∇̂) ⊆ SU(4) ⋉ R8. This is

equivalent to requiring that the spacetime admits the ∇̂-parallel forms

e−, e− ∧ ωI , e− ∧ Reχ , e− ∧ Im χ , (3.3)

where

ωI = −(e1 ∧ e6 + e2 ∧ e7 + e3 ∧ e8 + e4 ∧ e9) , χ = (e1 + ie6) ∧ · · · ∧ (e4 + ie9) , (3.4)

and I is an endomorphism constructed by the metric and the two form ωI . In particular

I can be thought of as an “almost complex” structure in the “transverse space” to the

6The associated real basis is
`

1 + e1234, i(1 − e1234)
´

. This can be easily found by taking the real and

imaginary parts of the complex spinor 1 with respect to a reality condition that defines the Majorana-Weyl

representation of Spin(9, 1), see [28].
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light-cone directions. In the Hermitian light-cone frame e+, e−, eα, eᾱ, it has components

Iα
β = iδα

β, α, β = 1, 2, 3, 4.

To continue, the metric and three-form can be written as in appendix A. In this case,

k = su(4). So, su(4)⊥ is spanned by the (2,0)- and (0,2)-forms, and ωI in Λ2(R8) ⊗ C.

As we have explained in appendix A, the components of H
su(4)⊥

−ij are determined by the

geometry. In particular, one finds that

H2,0+0,2
−ij = −1

2
[iI(∇−ω)]ij =

1

2 · 3! [(∇−Re χ)ik1k2k3
Re χj

k1k2k3]2,0+0,2

=
1

2 · 3! [(∇−Im χ)ik1k2k3
Im χj

k1k2k3 ]2,0+0,2 ,

H−ijω
ij
I =

1

2 · 4! (∇−Reχ)k1k2k3k4
Imχk1k2k3k4 , i, j, · · · = 1, 2, 3, 4, 6, 7, 8, 9. (3.5)

Furthermore, the conditions along the transverse directions give

Hrest =
1

3!
Hijke

i ∧ ej ∧ ek

= −iI d̃ωI − 2N (I) = ⋆(d̃ωI ∧ ωI) −
1

2
⋆ (θωI

∧ ωI ∧ ωI) + N (I), (3.6)

where d̃ denotes the exterior derivative projected along the eight directions transverse

to the light-cone and the Hodge duality ⋆ operation7 is taken with volume form dvol =

e1 ∧ · · · ∧ e4 ∧ e6 ∧ · · · ∧ e9. For a similar expression for Hrest in the context of Riemannian

geometry see [9]. In addition θωI
= − ⋆ (⋆d̃ωI ∧ ωI) is the Lee form of ωI , and N (I) is a

(3,0) and (0,3) tensor, the Nijenhuis tensor of the endomorphism I, N (I)αβγ = 4Hαβγ . It

remains to find the conditions on the geometry. It turns out that

(de+)2,0+0,2
ij = −1

2
[iI(∇+ω)]ij ,

(de+)ijω
ij =

1

2 · 4!(∇+Re χ)k1k2k3k4
Imχk1k2k3k4 ,

W2 = 0 , θω = θReχ , (3.7)

where de− = η−+de+ and θRe χ = −1
4 ⋆ (⋆d̃Re χ ∧ Re χ) is the Lee form of Re χ. The first

two conditions are required for the compatibility of determining Hk⊥

+ij in terms of both

the Lie derivative of ω and χ along the parallel vector field. The last two conditions, are

required for the existence of Hrest. W2 is one of the Gray-Hervella classes for determining

U(n) structures [42]. The vanishing of W2 implies that that the Nijenhuis tensor is skew-

symmetric in all three indices. The non-vanishing of the Nijenhuis tensor indicates that

the endomorphism I is not integrable. The equality of the Lee forms θω and θReχ can also

be expressed as a condition on SU(4) classes by saying that W4 = W5.

3.2 Geometry of N = 1 supersymmetric backgrounds

The solution of the dilatino Killing spinor equation is

∂+Φ = 0 , H+α
α = 0 , − H+ᾱ1ᾱ2

+
1

2
H+β1β2

ǫβ1β2
ᾱ1ᾱ2

= 0 ,

∂ᾱΦ +
1

6
Hβ1β2β3

ǫβ1β2β3
ᾱ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 . (3.8)

7Note that ⋆ψi1...in−k
= 1

k!
ψj1...jk

ǫj1...jk
i1...in−k

.
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This is the same as that which has been found in [28] for N = 1 supersymmetric Spin(7)⋉
R8 backgrounds. The above conditions are in addition to those we have stated in the

previous section for the existence of a solution to the gravitino Killing spinor equation. In

particular, (3.8) can be rewritten as

∂+Φ = 0 , de− ∈ spin(7) ⊕s R8 ,

(dΦ)i +
1

8 · 3!Nk1k2k3
(Re χ)k1k2k3

i −
1

2
(θωI

)i −
1

2
H−+i = 0 , (3.9)

The space of spacetime two-forms decomposes under the action of Spin(7) ⋉ R8 into irre-

ducible representations. The condition de− ∈ spin(7) ⊕s R8 means that the two-form de−

takes values in the spin(7)⊕s R8 subspace. This is equivalent to writing de− = α + e− ∧ β,

where α is a two-form with values in the 21 irreducible representation in the decomposi-

tion of the transverse two-forms in Spin(7) representations and β is a transverse one-form.

Alternatively, this condition can be written as

(de−)ijω
ij = 0 , (de−)ij =

1

4
(de−)kl Reχij

kl . (3.10)

Both these conditions can be thought of as additional conditions on the geometry of space-

time. The components of de− that lie in su⊥(4) ⊂ spin(7) are not required to vanish. The

components of de− along su(4) ⊕s R8 are not restricted by the Killing spinor equations.

The last condition in (3.9) is a generalization of the conformal balance condition that it

is well-known for some supersymmetric type I backgrounds, see e.g. [7]. Variations of this

condition appear in all solutions of dilatino Killing spinor equation for all descendants.

3.3 Comparison with N=2

It is instructive to compare the conditions we have found for the N = 1 backgrounds with

the results of [28] for the N = L = 2 backgrounds. The solution of the dilatino Killing

spinor equation is

∂+Φ = 0 , H+α
α = 0 , H+ᾱ1ᾱ2

= Hβ1β2β3
= 0 ,

∂ᾱΦ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 . (3.11)

This can also be rewritten as

∂+Φ = 0 , N (I)ijk = 0 , de− ∈ su(4) ⊕s R8 ⊂ spin(7) ⊕s R8 ,

(dΦ)i −
1

2
(θωI

)i −
1

2
H−+i = 0 , (3.12)

i.e. the endomorphism I is integrable and both e− ∧ωI and e− ∧ χ are invariant under the

action of the ∇̂-parallel vector field e+, i.e.

Le+
(e− ∧ ωI) = Le+

(e− ∧ χ) = 0 . (3.13)

The conditions that arise from the gravitino Killing spinor equation are the same. The

differences of N = 1 and N = 2 backgrounds are summarized in table 2. The isotropy

group StabΣ of the N = 1 Killing spinor in Σ(P) is also tabulated.
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SU(4) ⋉ R8 de− N StabΣ

N = 1 spin(7) ⊕s R8 N (I) 6= 0 {1}
N = 2 su(4) ⊕s R8 N (I) = 0

Table 2: The differences in the geometry of N = 1 and N = 2 backgrounds are in the non-vanishing

components of de− and N (I). It is understood that the remaining conditions of the dilatino Killing

spinor equation for N = 1 backgrounds are valid.

4. The descendants of Sp(2) ⋉ R8

A basis in the space of parallel spinors can be chosen as

1 + e1234 , i(1 − e1234) , i(e12 + e34) , (4.1)

i.e. P = R < 1+ e1234, i(1− e1234), i(e12 + e34) >. It is easy to see that in this case Σ(P) =

Spin(1, 1) × SU(2), where SU(2) acts on P with the three-dimensional representation. In

particular, in the basis given above su(2) is spanned by Γ1̄2̄ − Γ34,Γ12 −Γ3̄4̄, i
2(Γ11̄ + Γ22̄ +

Γ33̄ +Γ44̄), and the generator of Spin(1, 1) is Γ+−. From these, it is straightforward to find

the N = 1 and N = 2 descendants.

As in the previous case, we first solve the gravitino Killing spinor equation. The

conditions that arise from the analysis of both the gravitino and dilatino Killing spinor

equations in all cases can be most efficiently organized as conditions on two endomorphisms

I and J . It turns out that this is a generic feature of all cases that have parallel spinors

with non-compact isotropy groups. In every new case, we shall introduce an appropriate

new endomorphism.

4.1 Geometry of the gravitino Killing spinor equation

The geometry of the gravitino Killing spinor equations can be investigated as in the SU(4)⋉
R8 case. The difference is that there are three ∇̂-parallel three-forms, instead of one,

associated with the Hermitian forms of an almost hyper-complex structure. Let {Ir, r =

1, 2, 3} = {I, J,K} be endomorphisms such that IrIs = −δrs18×8 + ǫrstIt. Then if the

forms

e− , e− ∧ ωI , e− ∧ ωJ , (4.2)

are ∇̂-parallel, then hol(∇̂) ⊆ Sp(2)⋉R8, where ωI , ωJ and ωK are the associated Hermitian

forms. One can easily show that e−∧ωK is parallel as well. In particular ωI can be chosen

as in the SU(4) ⋉ R8 case while ωJ = 2Re(e1 ∧ e2 + e3 ∧ e4).

The conditions on the geometry can be described as two copies of those of the SU(4)⋉
R8 case, with each copy associated with one of the endomorphisms I, J , that have to be

valid simultaneously. To proceed, we have to identify the directions that lie in sp(2)⊥,

Λ2(R8) = sp(2) ⊕ sp(2)⊥. For this first observe that sp(2) is spanned by the (1,1)-forms

in Λ2(R8) ⊗ C with respect to both I and J . Thus sp(2)⊥ is spanned by the (2,0)- and
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(0,2)-forms with respect to I, and those (1,1)-forms with respect to I that are (2,0) and

(0,2) with respect to J . So if one sets H
sp(2)⊥

− = (H2,0+0,2
− , Ȟ1,1

− ), then one can write

H2,0+0,2
−ij = −1

2
[iI(∇−ωI)]ij ,

Ȟ1,1
−ij = −1

2
[iJ(∇−ωJ)]1,1

ij , (4.3)

where the projections (2,0), (0,2) and (1,1) have been taken with respect to the I endo-

morphism. In addition, we get the geometric conditions

(de+)2,0+0,2
ij = −1

2
[iI(∇+ωI)]ij ,

ˇ(de+)
1,1

ij = −1

2
[iJ(∇+ωJ)]1,1

ij . (4.4)

Furthermore, one finds that

Hrest = −iI d̃ωI − 2N (I) = ⋆(d̃ωI ∧ ωI) −
1

2
⋆ (θωI

∧ ωI ∧ ωI) + N (I)

= −iJ d̃ωJ − 2N (J) = ⋆(d̃ωJ ∧ ωJ) − 1

2
⋆ (θωJ

∧ ωJ ∧ ωJ) + N (J) . (4.5)

The equality involving the I and J expression should be interpreted as a condition on the

geometry. Moreover W2(I) = W2(J) = 0 which is equivalent to the condition that the

Nijenhuis tensor of both I and J is skew-symmetric.

4.2 N=1

The dilatino Killing spinor equation is

A(1 + e1234) = 0 , (4.6)

The solution has been given in (3.8) or equivalently (3.9).

4.3 N=2

The dilatino Killing spinor equation is

A1 = 0 . (4.7)

The solution to the dilatino Killing spinor equation has already been given in either (3.11)

or equivalently (3.12).

4.4 Comparison with N=3

The conditions that arise form the dilatino Killing spinor equation in this case have been

computed in [28] and can be summarized as

∂+Φ = 0 , de− ∈ sp(2) ⊕s R8 , N (I)ijk = N (J)ijk = 0 ,

2∂iΦ − H−+i = (θωI
)i = (θωJ

)i . (4.8)

The conditions on the geometry that arise from the gravitino Killing spinor equation

are the same in all cases. The differences arise in the solution to the dilatino Killing spinor

equation and have been summarized in table 3. We also give StabΣ.
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Sp(2) ⋉ R8 de− N θ StabΣ

N = 1 spin(7) ⊕s R8 N (I),N (J) 6= 0 − U(1)

N = 2 su(4) ⊕s R8 N (I) = 0,N (J) 6= 0 −
N = 3 sp(2) ⊕s R8 N (I) = N (J) = 0 θωI

= θωJ

Table 3: The differences in the geometry of N = 1, N = 2 and N = 3 backgrounds are in the

non-vanishing components of de−, and N (I) and N (J), and the relation between the Lee forms.

− indicates that there is no relation between the Lee forms. It is understood that the remaining

conditions of the dilatino Killing spinor equation for N = 1 backgrounds are valid.

N StabΣ

1 SU(2)

2 U(1)

Table 4: The first column denotes the number of supersymmetries and the second column the

stability subgroups of Killing spinors for N ≤ 2 in Σ(P) = Spin(1, 1) × Sp(1)L × Sp(1)R.

5. The descendants of (SU(2) × SU(2)) ⋉ R8

A complex basis in the space of (SU(2) × SU(2)) ⋉ R8-invariant spinors is

1 , e12 . (5.1)

It is easy to see that in this case Σ(P) = Spin(1, 1)× Sp(1)L × Sp(1)R. Identifying P = H,

Sp(1)L × Sp(1)R acts as

x → axb̄ , x ∈ H , a ∈ Sp(1)L , b ∈ Sp(1)R . (5.2)

In addition, Spin(1, 1) has the generator Γ+−. There is a single type of orbit in P with

stability subgroup Sp(1) acting with the three-dimensional representation on the remaining

space. From this, one can easily determine the Killing spinors for all cases. The StabΣ

groups are given in table 4.

5.1 Geometry of the gravitino Killing spinor equation

The gravitino Killing spinor equation implies that hol(∇̂) ⊆ (SU(2)×SU(2))⋉R8. In turn

this is equivalent to requiring [28] that the forms

e− , e− ∧ ω1 , e− ∧ ω2 , e− ∧ χ1 , e− ∧ χ2 , (5.3)

are ∇̂-parallel, where ω1 = −i(e1∧e1̄+e2∧e2̄), ω2 = −i(e3∧e3̄+e4∧e4̄), χ1 = 2e1∧e2, and

χ2 = 2e3∧e4. In this case k⊥ is spanned by the (2,0) and (0,2) forms of the endomorphisms

I, J and L, where ωI = ω1 +ω2, ωJ = Re(χ1 +χ2) and ωL = ω1−ω2. The endomorphisms

satisfy the algebra

I2 = J2 = L2 = −18×8 , IJ = −JI , IL = LI , JL = −LJ . (5.4)
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In addition (I, J,K = IJ) and (L,M = ILJ,N = −IJ) are almost hyper-complex struc-

tures, and P = IL is an almost product structure. The geometric conditions that arise

from the gravitino Killing spinor equation are those that arise from three U(4) ⋉ R8 struc-

tures each associated with I, J and L, respectively. Applying the results of appendix A,

we find the geometric conditions

(de+)αβ = −1

2
(iI1∇+ω1)αβ , (de+)pq = −1

2
(iI2∇+ω2)pq

(de+)pα = −2(iI1∇+ω1)pα , (de+)p̄α = −2(iI1∇+ω1)p̄α

(de+)ij ωij
1 = (∇+Reχ1)ij Imχij

1 , (∇+ω1)pq = 0 ,

(de+)ij ωij
2 = (∇+Reχ2)ij Imχij

2 , (∇+ω2)αβ = 0 , (5.5)

where α, β = 1, 2 and p, q = 3, 4. From these it is also straightforward to express the

components of Hk⊥

− in terms of the geometry. In particular, one has that

H−αβ = −1

2
(iI1∇−ω1)αβ = (∇−Reχ1)αi Re(χ1)β

i + (∇−Im χ1)αi Im(χ1)β
i

H−pq = −1

2
(iI2∇−ω2)pq = (∇−Reχ2)pi Re(χ2)q

i + (∇−Im χ2)pi Im(χ2)q
i

H−pα = −2(iI1∇−ω1)pα = −2(iI2∇−ω2)pα = 2(∇−Reχ1)pi (Re χ1)α
i

= −2(∇−Reχ2)αi (Re χ2)p
i ,

H−p̄α = −2(iI1∇−ω1)p̄α = −2(iI2∇−ω2)p̄α = 2(∇−Reχ1)p̄i (Re χ1)α
i ,

= −2(∇−Reχ2)αi (Re χ2)p̄
i ,

H−ij ωij
1 = (∇−Reχ1)ij Imχij

1 , (∇−ω1)pq = 0 ,

H−ij ωij
2 = (∇−Reχ2)ij Imχij

2 , (∇−ω2)αβ = 0 . (5.6)

This concludes the analysis of the conditions along the light-cone directions.

Next consider the parallel transport equations along the transverse directions. It turns

out that

Hrest = −iI d̃ωI − 2N (I) = ⋆(d̃ωI ∧ ωI) −
1

2
⋆ (θωI

∧ ωI ∧ ωI) + N (I)

= −iJ d̃ωJ − 2N (J) = ⋆(d̃ωJ ∧ ωJ) − 1

2
⋆ (θωJ

∧ ωJ ∧ ωJ) + N (J)

= −iLd̃ωL − 2N (L) = ⋆(d̃ωL ∧ ωL) − 1

2
⋆ (θωL

∧ ωL ∧ ωL) + N (L) . (5.7)

In addition, the W2 Gray-Hervella classes for each endomorphism should also vanish, i.e.

W2(I) = W2(J) = W2(L) = 0 . (5.8)

This in turn implies that the Nijenhuis tensors of all endomorphisms are skew-symmetric.

5.2 N=1

As in previous N = 1 cases the dilatino Killing spinor equation is

A(1 + e1234) = 0 . (5.9)

The solution has been given in either (3.8) or equivalently (3.9). It can be easily decomposed

in SU(2) × SU(2) representations but the way it is stated in (3.9) suffices for our purpose.
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×2 SU(2) ⋉ R8 de− N θ

N = 1 spin(7) ⊕s R8 N (I),N (J),N (L) 6= 0 −
N = 2 su(4) ⊕s R8 N (I) = 0,N (J),N (J) 6= 0 −
N = 3 sp(2) ⊕s R8 N (I) = N (J) = 0,N (L) 6= 0 θωI

= θωJ

N = 4 (su(2) ⊕ su(2)) ⊕s R8 N (I) = N (J) = N (L) = 0 θωI
= θωJ

= θωL

Table 5: The differences in the geometry of descendants are in the non-vanishing components of

de−, and N (I), N (J) and N (L), and the relation between the Lee forms. − indicates that there is

no relation between the Lee forms. It is understood that the remaining conditions of the dilatino

Killing spinor equation of N = 1 supersymmetric backgrounds are valid.

5.3 N=2

The dilatino Killing spinor equation is

A1 = 0 . (5.10)

The solution has been given in either (3.11) or equivalently (3.12). Again the solution can

be easily decomposed in SU(2) × SU(2) representations but the way it has been expressed

in (3.12) will suffice.

5.4 N=3

The dilatino Killing spinor equation is

A1 = 0 , A(e12 − e34) = 0 . (5.11)

The solution of the dilatino Killing spinor equation is the same as for the N = 3 super-

symmetric backgrounds with Sp(2) ⋉ R8-invariant parallel spinors. These conditions have

already been stated in (4.8).

5.5 Comparison with N=4

The solution of the dilatino Killing spinor equation has been given in [28]. This is summa-

rized as

∂+Φ = 0 , de− ∈ (su(2) ⊕ su(2)) ⊕s R8 ,

N (I)ijk = N (J)ijk = N (L)ijk = 0 ,

2∂iΦ − H−+i = (θωI
)i = (θωJ

)i = (θωL
)i . (5.12)

The conditions that arise from the gravitino Killing spinor equation are the same in all

cases. The differences in the geometry of the descendants that arise from the dilatino

Killing spinor equation are summarized in table 5.

6. SU(2) ⋉ R8 and its descendants

A basis in the space of ∇̂-parallel spinors P is

1 , e12 , e13 + e24 . (6.1)
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N StabΣ

1 SU(2) × SU(2)

2 SU(2)

Table 6: The first column denotes the number of supersymmetries and the second column the

stability subgroups of Killing spinors for N ≤ 2 in Σ(P) = Spin(1, 1) × Sp(2).

It can be easily verified by a direct computation that the above spinors are invariant under

SU(2) ⋉ R8, where su(2) is generated by

i(Γ11̄ − Γ22̄ − Γ33̄ + Γ44̄) , i(Γ12̄ + Γ21̄ − Γ34̄ − Γ43̄) , Γ12̄ − Γ21̄ + Γ34̄ − Γ43̄ . (6.2)

Alternatively observe that chiral Majorana-Weyl representation of Spin(8), ∆+
8
, decom-

poses under SU(2) × SU(2) as ∆+
8

= ⊕4R ⊕ H, where the first four directions are spanned

by the SU(2)×SU(2)-invariant spinors. Moreover SU(2)×SU(2) acts on H by left and right

quaternionic multiplication. Consequently, the diagonal SU(2) subgroup leaves invariant

an additional spinor, and so SU(2) ⋉ R8 leaves invariant five spinors.

To investigate the descendants of SU(2) ⋉ R8 first observe that Σ(P) = Spin(1, 1) ×
Sp(2), where Sp(2) acts on P with the five-dimensional vector representation, Sp(2) =

Spin(5). This can be verified either by a direct computation or by observing that any

three linearly independent spinors in ∆+
8

have stability subgroup Sp(2) ⊂ Spin(8). Again

Spin(1, 1) is generated by Γ+−. The group Sp(2) acts transitively on the S4 ⊂ P with

stability subgroup SU(2) × SU(2). Using this, it is easy to construct all the descendants.

The StabΣ groups are collected in table 6.

6.1 The geometry of the gravitino Killing spinor equation

The gravitino Killing spinor equation is

∇̂1 = ∇̂e12 = ∇̂(e13 + e24) = 0 , (6.3)

which implies that hol(∇̂) ⊆ SU(2) ⋉ R8. In turn this is equivalent to requiring that the

forms

e− , e− ∧ ωI , e− ∧ ωJ , e− ∧ ωL , e− ∧ ωQ (6.4)

are ∇̂-parallel, where the first four forms are defined as in the (SU(2) ⋉ SU(2)) ⋉ R8 case

and

ωQ = e1 ∧ e3 + e2 ∧ e4 + e1̄ ∧ e3̄ + e2̄ ∧ e4̄ . (6.5)

The form spinor bilinears are given in appendix D. The new endomorphism Q satisfies the

algebraic conditions

IQ = −QI , JQ = QJ , QL = LQ , Q2 = −18×8 . (6.6)
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It is clear that Q is on the same footing as the other three. The su(2)⊥ is spanned by

those forms in Λ2(R8) which are (2,0) and (0,2) with respect to all endomorphisms. So the

conditions on the geometry are four copies of those that we have found for SU(4) ⋉ R8.

In particular, the gravitino Killing spinor equation along the directions transverse to the

light-cone gives conditions like (5.7) and (5.8) but now for all endomorphisms I, J , L and

Q, see also the general analysis of appendix A. The results are tabulated in table 7.

6.2 N=1

The dilatino Killing spinor equation is

A(1 + e1234) = 0 (6.7)

The solution has been given in (3.9).

6.3 N=2

The dilatino Killing spinor equations are

A1 = 0 (6.8)

The solution has been given in (3.12).

6.4 N=3

The dilatino Killing spinor equations are

A1 = A(e12 − e34) = 0 (6.9)

The solution has been given in (4.8).

6.5 N=4

The dilatino Killing spinor equations are

A1 = Ae12 = 0 (6.10)

The solution has been given in (5.12).

6.6 N=5 and comparison with the descendants

The dilatino Killing spinor equations are

A1 = Ae12 = A(e13 + e24) = 0 . (6.11)

The solution to the dilatino Killing spinor equation is

∂+Φ = 0 , de− ∈ su(2) ⊕s R8 ,

N (I)ijk = N (J)ijk = N (L)ijk = N (Q)ijk = 0 ,

2∂iΦ − H−+i = (θωI
)i = (θωJ

)i = (θωL
)i = (θωQ

)i . (6.12)

The conditions that arise from the gravitino Killing spinor equation are the same in

all cases. The N = 5 case and the descendants differ in the conditions that arise from the

dilatino Killing spinor equation. The differences are summarized in table 7.
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SU(2) ⋉ R8 de− N θ

N = 1 spin(7) ⊕s R8 N (I),N (J), −
N (L),N (Q) 6= 0

N = 2 su(4) ⊕s R8 N (I) = 0 −
N (J),N (J),N (Q) 6= 0

N = 3 sp(2) ⊕s R8 N (I) = N (J) = 0, θωI
= θωJ

N (L),N (Q) 6= 0

N = 4 (su(2) ⊕ su(2)) ⊕s R8 N (I) = N (J) = N (L) = 0 θωI
= θωJ

= θωL

N (Q) 6= 0

N = 5 su(2) ⊕s R8 N (I) = N (J) = θωI
= θωJ

= θωL
= θωQ

N (L) = N (Q) = 0

Table 7: As in previous cases, the differences in the geometry of descendants are in the non-

vanishing components of de−, and N (I), N (J), N (L), and N (Q) and the relation between the

Lee forms. − indicates that there is no relation between the Lee forms. It is understood that the

remaining conditions of the dilatino Killing spinor equation of N = 1 supersymmetric backgrounds

are valid.

7. U(1) ⋉ R8 and its descendants

A complex basis in the space of parallel spinors P is

1, e12 , e13 . (7.1)

The presence of backgrounds with six parallel spinors is a direct consequence of the previous

SU(2) ⋉ R8 case. To see this, we decompose ∆+
8

under SU(2) as ∆+
8

= ⊕5R ⊕ R3, where

the first five singlets span the five SU(2) ⋉ R8-invariant spinors. Since SU(2) acts with the

vector representation on R3, there is an additional invariant spinor with stability subgroup

U(1) ⋉ R8. In the basis chosen above, u(1) is generated by

i(Γ11̄ − Γ22̄ − Γ33̄ + Γ44̄) . (7.2)

To investigate the descendants of U(1)⋉R8 first observe that Σ(P) = Spin(1, 1)×SU(4),

where SU(4) acts on P with the real six-dimensional vector representation, SU(4) =

Spin(6). This can easily be seen from previous results by a direct commutation. Alterna-

tively, it is a consequence of the fact that the stability subgroup in Spin(8) of two linearly

independent spinors in ∆+
8

is SU(4), and that SU(4) acts on the remaining spinors with the

six-dimensional representation. The descendants can be easily found using group theory

and the observation that SU(4) acts transitively on the S5 in P with stability subgroup

Sp(2). The StabΣ groups have been collected in table 8.

7.1 The geometry of the gravitino Killing spinor equation

The gravitino Killing spinor equation is

∇̂1 = ∇̂e12 = ∇̂e13 = 0 . (7.3)

– 21 –



J
H
E
P
0
8
(
2
0
0
7
)
0
7
4

N StabΣ

1 Sp(2)

2 SU(2) × SU(2)

3 SU(2)

Table 8: The first column denotes the number of supersymmetries and the second column the

stability subgroups of Killing spinors for N ≤ 3 in Σ(P) = Spin(1, 1) × SU(4).

This is equivalent to requiring that hol(∇̂) ⊆ U(1) ⋉ R8. Explicitly, the solution is

Ω̂A,B+ = Ω̂A,αβ = Ω̂A,αβ̄ = 0 , (α 6= β) ,

Ω̂A,11̄ = −Ω̂A,22̄ = −Ω̂A,33̄ = Ω̂A,44̄ . (7.4)

The condition that hol(∇̂) ⊆ U(1) ⋉ R8 is also equivalent to requiring that the forms

e− , e− ∧ ωI , e− ∧ ωJ , e− ∧ ωL , e− ∧ ωQ , e− ∧ ωT , (7.5)

are ∇̂-parallel, where the first five forms are defined as in the SU(2) ⋉ R8 case and

ωT = −i(e1 ∧ e1̄ − e2 ∧ e2̄ + e3 ∧ e3̄ − e4 ∧ e4̄) . (7.6)

The form spinor bilinears are given in appendix D. The new endomorphism obeys the

algebraic conditions

IT = TI , JT = TJ , TL = LT , TQ = −QT , T 2 = −18×8 . (7.7)

It is clear that the endomorphism T is on the same footing as the other four. So the

conditions on the geometry are five copies of those that we have found for SU(4)⋉R8 case.

In particular, the gravitino Killing spinor equation along the directions transverse to the

light-cone gives conditions like (5.7) and (5.8) but now for all endomorphisms I, J , L, Q

and T , see also appendix A. The results are tabulated in table 9.

7.2 N=1

The dilatino Killing spinor equation is

A(1 + e1234) = 0 . (7.8)

The solution has been given in (3.9).

7.3 N=2

The dilatino Killing spinor equation is

A1 = 0 . (7.9)

The solution has been given in (3.12).
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7.4 N=3

The dilatino Killing spinor equations are

A1 = A(e12 + e34) = 0 . (7.10)

The solution has been given in (4.8).

7.5 N=4

The dilatino Killing spinor equations are

A1 = Ae12 = 0 (7.11)

The solution has been given in (5.12).

7.6 N=5

The dilatino Killing spinor equations are

A1 = Ae12 = A(e13 + e24) = 0 (7.12)

The solution has been given in (6.12).

7.7 N=6 and comparison with the descendants

The dilatino Killing spinor equations are

A1 = Ae12 = Ae13 = 0 . (7.13)

The solution can be written as

∂+Φ = 0 , de− ∈ u(1) ⊕s R8 ,

N (I)ijk = N (J)ijk = N (L)ijk = N (Q)ijk = N (T )ijk = 0 ,

2∂iΦ − H−+i = (θωI
)i = (θωJ

)i = (θωL
)i = (θωQ

)i = (θωT
)i . (7.14)

Again, the conditions that arise from the gravitino Killing spinor equation are common to

all cases. So the differences arise from the conditions implied by the dilatino Killing spinor

equation. These have been summarized in table 9.

8. The descendants of R8

A complex basis in the space of ∇̂-parallel spinors P is

1 , eij , i, j ≤ 4. (8.1)

It is clear that these spinors are invariant under R8. Direct inspection reveals that P
can be identified with the positive chirality Majorana-Weyl representation ∆+

8
of Spin(8),

P = ∆+
8
. Using this, we find that Σ(P) = Spin(1, 1) × Spin(8), where the generator of

Spin(1, 1) is Γ+−.

– 23 –



J
H
E
P
0
8
(
2
0
0
7
)
0
7
4

U(1) ⋉ R8 de− N θ

N = 1 spin(7) ⊕s R8 N (I),N (J), −
N (L),N (Q),N (T ) 6= 0

N = 2 su(4) ⊕s R8 N (I) = 0 −
N (J),N (J),N (Q),N (T ) 6= 0

N = 3 sp(2) ⊕s R8 N (I) = N (J) = 0, θωI
= θωJ

N (L),N (Q),N (T ) 6= 0

N = 4 (su(2) ⊕ su(2)) ⊕s R8 N (I) = N (J) = N (L) = 0 θωI
= θωJ

= θωL

N (Q),N (T ) 6= 0

N = 5 su(2) ⊕s R8 N (I) = N (J) = θωI
= θωJ

=

N (L) = N (Q) = 0,N (T ) 6= 0 θωL
= θωQ

N = 6 u(1) ⊕s R8 N (I) = N (J) = θωI
= θωJ

=

N (L) = N (Q) = N (T ) = 0 θωL
= θωQ

= θωT

Table 9: As in previous cases, the differences in the geometry of descendants are in the non-

vanishing components of de−, and N (I), N (J), N (L), N (Q) and N (T ), and the relation between

the Lee forms. − indicates that there is no relation between the Lee forms. It is understood that the

remaining conditions of the dilatino Killing spinor equation of N = 1 supersymmetric backgrounds

are valid.

N StabΣ

1 Spin(7)

2 SU(4)

3 Sp(2)

4 SU(2) × SU(2)

Table 10: The first column denotes the number of supersymmetries and the second column the

stability subgroups of Killing spinors for N ≤ 4 in Σ(P) = Spin(1, 1) × Spin(8).

In the investigation of the descendants with N > 4 it is also necessary to consider the

normals to the parallel spinors. Using the definitions in section two, Q can also be identified

with the positive chirality Majorana-Weyl representation ∆+
8

of Spin(8), Q = ∆+
8
. The

identification of descendants of R8 is the most involved so far. Because of this, we shall

describe each case in more detail. The descendants can be easily found using group theory

and the observation that Spin(7) acts transitively on the S7 in P with stability subgroup

Spin(7). The StabΣ groups have been collected in table 10.

8.1 Geometry of the gravitino Killing spinor equation

The condition that hol(∇̂) ⊆ R8 is equivalent to requiring that the forms

e− , e− ∧ ei , i = 1, 2, 3, 4, 6, 7, 8, 9 . (8.2)

are ∇̂-parallel. In this case, all the components of H are determined in terms of the
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geometry. To see this define the one-forms (vi) = δije
j . Then

Hijk = −2∇i(vj)k , H−ij = −2∇−(vi)j . (8.3)

In addition, one also has the geometric conditions

∇i(vj)k = ∇[i(vj)k] , (de+)ij = −2∇+(vi)j . (8.4)

We can also describe the solution of the gravitino Killing spinor equation by choosing,

e−, e− ∧ ω, as ∇̂-parallel forms, where ω is a shorthand for a basis in the space of two-

forms. This would have been more uniform with previous cases but the choice of the

parallel forms in (8.2), even though they are not associated with spinor bilinears, leads to

a simpler description of the spacetime geometry. As in previous cases, the dilatino Killing

spinor equation imposes additional conditions on the fluxes and geometry.

8.2 N=1

As we have explained in section two, to choose the first Killing spinor in P, it suffices to

find the orbits of Σ(P) = Spin(1, 1)×Spin(8) in P = ∆+
8
. There is only one type of orbit of

co-dimension zero which has stability subgroup Spin(7) in Σ(P). In particular, the dilatino

Killing spinor equation is

A(1 + e1234) = 0 . (8.5)

The solution of this equation expressed in Spin(7) representations is given in [28] and reads

∂+Φ = 0 , de− ∈ spin(7) ⊕s R8 ,

∂iΦ − 1

2
(θφ)i −

1

2
H−+i = 0 , (8.6)

where θφ = −1
6 ⋆ (⋆d̃φ∧ φ) is the Lee form of the Spin(7)-invariant form φ, and the Hodge

dual has been taken with respect to the volume form dvol = e1∧e2∧e3∧e4∧e6∧e7∧e8∧e9.

8.3 N=2

The first Killing spinor ǫ is chosen as in the N = 1 case above, ǫ1 = ǫ. To choose the

direction of the second Killing spinor ǫ2 observe that ∆+
8

decomposes under the stability

subgroup of the first normal as ∆+
8

= R < 1 + e1234 > ⊕Λ1
7
(R7), i.e. P/K = Λ1

7
(R7). In

addition, Stab(K) = Spin(1, 1) × Spin(7), where Spin(7) is the stability subgroup of ǫ1.

Since Spin(7) acts transitively on the sphere in the space of one-forms of R7, Stab(P) has

a single orbit in Λ1
7
(R7) of codimension zero with stability subgroup SU(4). So we can

choose ǫ2 = i(1 − e1234). The dilatino Killing spinor equation is

A1 = 0 . (8.7)

The solution organized in SU(4) representations is given in (3.12).
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8.4 N=3

Next consider K = R < ǫ1, ǫ2 >, where e1, ǫ2 are the Killing spinors of the N = 2 case above,

and observe that Stab(P) = Spin(1, 1)×SU(4)×U(1). This group8 is constructed from the

stability subgroup SU(4) of both spinors, a U(1) generated by iΓ11̄ which rotates ǫ1 and ǫ2

and a boost (scaling) generated by Γ+−. Next observe that under Stab(K), P decomposes

as P = K⊕ReΛ2
6
(C4), and so P/K = ReΛ2

6
(C4). For this, we have used the decomposition

Λ1
7
(R7) = R < i(1 − e1234) > ⊕ReΛ2

6
(C4) under SU(4), where SU(4) = Spin(6) acts with

the vector representation9 on ReΛ2
6
(C4) = R6. Thus Spin(1, 1) × SU(4) × U(1) has one

type of orbit in ReΛ2
6
(C4) of codimension zero with stability subgroup Sp(2)×U(1), where

Sp(2) = Spin(5). Thus a representative can be chosen as

ǫ3 = i(e12 + e34) . (8.8)

The dilatino Killing spinor equation is

A1 = A(e12 + e34) = 0 . (8.9)

The solution of this Killing spinor equation has been given in (4.8).

8.5 N=4

The N = 4 can be investigated in two ways. One is to use the gauge symmetry either to

specify the Killing spinors or to determine their normals. It is the “self-dual” case under

the correspondence

N ←→ 8 − N . (8.10)

The two ways of examining N = 4 are equivalent, so without loss of generality, we shall

determine the Killing spinors. We begin by choosing the first three Killing spinors, ǫ1, ǫ2, ǫ3

as in the N = 3 case above. To determine the forth Killing spinor ǫ4, let K = R <

ǫ1, ǫ2, ǫ3 > be the vector space spanned by the three Killing spinors. First observe that

Σ(K) = Spin(1, 1) × Sp(2)× SU(2), where Sp(2) is the stability subgroup of the first three

spinors and SU(2) acts on them with the vector representation. It suffices to focus on

Sp(2). To determine P/K recall the results from N = 3 and observe that ReΛ2(C4) = R <

i(e12 + e34) > ⊕Λ1
5
(R5) under Sp(2), therefore P/K = Λ1

5
(R5). Moreover Sp(2) = Spin(5)

acts with the vector representation on P/K and so it has a unique type of orbit S4 with

stability subgroup Spin(4) = SU(2) × SU(2). In fact Stab(K) has an orbit in P/K of

codimension zero, a representative can be chosen as

ǫ4 = i(e12 + e34) . (8.11)

8There may be discrete identifications in Stab(P) that we do not take into account because the analysis

is focused on the Lie algebra level, i.e. one may have instead Stab(P) = Spin(1, 1) × (SU(4) · U(1)).
9The reality condition in Λ2(C4

) is defined by the anti-linear map τ constructed from complex con-

jugation followed by a duality map. Observe that this commutes with the SU(4) action on Λ2(C4
). So

ReΛ2(C4
) is defined as the fixed point set of τ .
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N Σ

1 Spin(1, 1) × Spin(8)

2 Spin(1, 1) × Spin(7)

3 Spin(1, 1) × SU(4) × U(1)

4 Spin(1, 1) × Sp(2) × SU(2)

Table 11: For N > 4 the same Σ groups are used to determine the normals of the Killing spinors.

The dilatino Killing spinor equation for N = 4 backgrounds becomes

A1 = Ae12 = 0 . (8.12)

The solution of this has been given in (5.12). In table 11, we summarize the groups Σ that

have been used in the identification of the descendants.

8.6 N=5

The selection of Killing spinors for the remaining N > 4 backgrounds is straightforward

from the analysis we have presented for the N < 4 cases and the correspondence N ↔
8 − N . So the dilatino Killing spinor equations for N > 4 will be written down without

further explanation. The choice of representatives is such that the Killing spinors of N -

supersymmetric backgrounds are included in the N + 1-supersymmetric ones.

The dilatino Killing spinor equation is

A1 = Ae12 = A(e13 + e24) = 0 . (8.13)

The solution has been given in (6.12).

8.7 N=6

The dilatino Killing spinor equation is

A1 = Ae12 = Ae13 = 0 . (8.14)

The solution has been given in (7.14).

8.8 N=7

The dilatino Killing spinor equation is

A1 = Ae12 = Ae13 = A(e23 − e14) = 0 . (8.15)

The solution is

∂+Φ = 0 , de− ∈ R8 ,

N (I)ijk = N (J)ijk = N (L)ijk = N (Q)ijk = N (T )ijk = N (U)ijk = 0 ,

2∂iΦ − H−+i = (θωI
)i = (θωJ

)i = (θωL
)i = (θωQ

)i = (θωT
)i = (θωU

)i , (8.16)
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where the sixth endomorphism U is defined via the Hermitian form

ωU = e1 ∧ e4 + e1̄ ∧ e4̄ − e2 ∧ e3 − e2̄ ∧ e3̄ . (8.17)

The new endomorphism satisfies the algebraic conditions

UI = −IU , UJ = JU , UL = LU , UQ = −QU , UT = TU, U2 = −18×8 .(8.18)

The dilatino Killing spinor equations imply that all the Lee forms of the endomorphisms

are equal. However, this does not imply that all components of Hrest vanish. In particular,

the non-vanishing components are

1
2H12̄3̄ = +H4̄11̄ = −H4̄22̄ = −H4̄33̄ ,
1
2H42̄3̄ = −H1̄44̄ = H1̄22̄ = H1̄33̄ ,
1
2H21̄4̄ = +H3̄22̄ = −H3̄11̄ = −H3̄44̄ ,
1
2H31̄4̄ = −H2̄33̄ = H2̄11̄ = H2̄44̄ . (8.19)

8.9 N=8 and comparison with the descendants

The solution of the dilatino Killing spinor equation of N = 8 supersymmetric back-

grounds [28] is

∂+Φ = 0 , de− ∈ R8 , Hijk = 0 , 2∂iΦ − H−+i = 0 . (8.20)

The conditions that arise from the gravitino Killing spinor equation are common in all

cases. The differences arise from those of the dilatino Killing spinor equation. We have

summarize these in table 12.

9. Descendants and reduction of holonomy

So far we have solved the Killing spinor equations for all supersymmetric backgrounds

for which the stability subgroup of the parallel spinors is non-compact, Stab(ǫ1, . . . , ǫL) =

K⋉R8. The question that arises is whether the Bianchi identity of H and the field equations

impose additional conditions on the existence of the various descendants we have found.

We shall show that10 if

dH = 0 , (9.1)

and the field equations are satisfied, then for the descendants hol(∇̂) ⊂ K ⋉ R8. So the

holonomy of the ∇̂-connection is a proper subgroup of the stability group of the parallel

spinors. Since the holonomy of ∇̂ reduces, the structure group of the spacetime may reduce

as well. Alternatively, if

dH = 0 , hol(∇̂) = K ⋉ R8 (9.2)

10This assumption is sufficient. What is required is that the term involving dH in the appropriate Bianchi

identity in appendix A does not contribute in the calculations for the parallel forms.
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SU(2) ⋉ R8 de− N θ

N = 1 spin(7) ⊕s R8 N (I),N (J),N (L) −
N (Q),N (T ),N (U) 6= 0

N = 2 su(4) ⊕s R8 N (I) = 0,N (J),N (J), −
N (Q),N (T ),N (U) 6= 0

N = 3 sp(2) ⊕s R8 N (I) = N (J) = 0,N (L), θωI
= θωJ

N (Q),N (T ),N (U) 6= 0

N = 4 (su(2) ⊕ su(2)) ⊕s R8 N (I) = N (J) = N (L) = 0 θωI
= θωJ

= θωL

N (Q),N (T ),N (U) 6= 0

N = 5 su(2) ⊕s R8 N (I) = N (J) = N (L) = θωI
= θωJ

=

N (Q) = 0,N (T ),N (U) 6= 0 θωL
= θωQ

N = 6 u(1) ⊕s R8 N (I) = N (J) = N (L) = θωI
= θωJ

=

N (Q) = N (T ) = 0,N (U) 6= 0 θωL
= θωQ

= θωT

N = 7 R8 N (I) = N (J) = N (L) = θωI
= θωJ

= θωL
=

N (Q) = N (T ) = N (U) = 0 θωQ
= θωT

= θωU

N = 8 R8 Hijk = 0

Table 12: As in previous cases, the differences in the geometry of descendants are in the non-

vanishing components of de−, and N (I), N (J), N (L), N (Q), N (T ) and N (U) and the relation

between the Lee forms. In the N = 8 case, Hrest = 0 and so all the Nijenhuis tensors and Lee

forms vanish. − indicates that there is no relation between the Lee forms. It is understood that the

remaining conditions of the dilatino Killing spinor equation of N = 1 supersymmetric backgrounds

are valid.

and the field equations are satisfied, then the gravitino Killing spinor equations imply the

dilatino ones, and all ∇̂-parallel spinors are Killing. So there are no descendants and the

only backgrounds that exist are those investigated in [28].

To establish these, we shall investigate in detail the ∇̂-parallel forms on the spacetime

that arise as a consequence of the gravitino Killing spinor equation, dH = 0 and the field

equations of type I backgrounds. We shall focus first on the SU(4)⋉R8 case. We shall find

that the spacetime may admit more parallel forms than those that may have been expected

from the SU(4) ⋉ R8 isotropy group of the Killing spinors alone. As a consequence, we

shall show the two statements mentioned above.

9.1 Parallel forms of SU(4) ⋉ R8 backgrounds

Suppose that dH = 0 and hol ⊆ SU(4) ⋉ R8. To find additional parallel forms, we use the

integrability condition of the gravitino Killing spinor equation as well the Bianchi identities

of the R̂ curvature. These have been summarized in appendix A. Since we have assumed

dH = 0, the Bianchi identity gives

R̂A[B,CD] = −1

3
∇̂AHBCD . (9.3)

To proceed, set B = +, C = α,D = β̄ in (9.3) and contract with δαβ̄ . Using that
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hol(∇̂) ⊆ SU(4) ⋉ R8, e.g. R̂AB,α
α = 0, it is easy to see that (9.3) implies that

τ1 = iH+α
α e+ (9.4)

is ∇̂-parallel. Therefore if τ1 6= 0, then hol(∇̂) ⊂ SU(4). However, if we insist that

hol(∇̂) = SU(4) ⋉ R8, then τ1 = 0.

To continue, set B = +, C = α,D = β in (9.3) and use that hol(∇̂) ⊆ SU(4) ⋉ R8,

i.e. R̂AB,+i = R̂AB,αβ = 0, then it is easy to show that the three-form

τ2 =
1

2
H+αβ e+ ∧ eα ∧ eβ , (9.5)

is ∇̂-parallel,

∇̂Aτ2 = 0 , (9.6)

Since there is no such form invariant under SU(4) ⋉ R8, one can only conclude that either

the holonomy of ∇̂ reduces to a proper subgroup of SU(4) ⋉ R8 or τ2 = 0.

Next set B = α,C = β,D = γ in (9.3), and use that hol(∇̂) ⊆ SU(4) ⋉ R8 and τ2 = 0,

to show that

τ3 =
1

3!
Hαβγeα ∧ eβ ∧ eγ (9.7)

is also ∇̂-parallel, i.e.

∇̂Aτ3 = 0 . (9.8)

Again there is no such form invariant under SU(4)⋉R8. So either the holonomy of ∇̂ reduces

to a proper subgroup of SU(4)⋉R8 or τ3 = 0. Insisting that hol(∇̂) = SU(4)⋉R8, we have

to set τ3 = 0. The observation that the Nijenhuis tensor of a Riemannian manifolds with

a U(n)-structure compatible with a connection with skew-symmetric torsion H, dH = 0,

is ∇̂-parallel has been made in the context of supersymmetric sigma models in [38, 39, 9].

There are two additional parallel one-forms which can be found using the field equations

R̂AC,
C

B − 2∇̂A∂BΦ = 0 . (9.9)

Setting B = + and using hol(∇̂) ⊆ SU(4) ⋉ R8, one can show that the one-form

τ4 = ∂+Φ e+ , (9.10)

is ∇̂-parallel. Since there is no such one-form invariant under SU(4) ⋉ R8, either the

holonomy of hol(∇̂) reduces to a subgroup of SU(4) ⋉ R8 or τ4 = 0.

Next set B = α,C = β,D = γ̄ in (9.3), take the trace in β, γ̄, and use τ1 = τ2 = τ4 = 0

and hol(∇̂) ⊆ SU(4) ⋉ R8 to find

R̂Aβ,
β

α = −[∂AHαβ
β − Ω̂A,

δ
αHδβ

β − Ω̂A,
+

βHα+
β] (9.11)

Similarly set B = +, C = −,D = α in (9.3), to get that

R̂A+,−α = −[∂AH+−α − Ω̂A,
δ
αH+−δ − Ω̂A,

β̄
−H+β̄α] . (9.12)
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Substituting these into the field equations

R̂Aβ,
β

α + R̂A+,−α − 2∇̂A∂αΦ = 0 , (9.13)

we find that the one-form

τ5 = (2∂iΦ − θi + H+−i)e
i , (9.14)

is ∇̂-parallel. Again, since there is no such one-form invariant under SU(4) ⋉ R8, either

the holonomy of hol(∇̂) reduces to a subgroup of SU(4) ⋉ R8 or τ5 = 0.

For backgrounds to have precisely N = 1 supersymmetry, neither τ2 nor τ3 should

vanish. As a consequence of the analysis above, hol(∇̂) ⊂ SU(4)⋉R8 and so the holonomy

reduces to a proper subgroup of the isotropy group of the parallel spinors.

Another consequence of the analysis above is that if dH = 0, the field equations are

satisfied and hol(∇̂) = SU(4) ⋉ R8, then all ∇̂-parallel spinors are Killing. This is because

in such a case τ1 = τ2 = τ3 = τ4 = τ5 = 0 which are precisely the conditions (3.12) that

arise from the dilatino Killing spinor equation of N = 2 backgrounds.

9.2 Parallel forms and descendants

We shall now turn to show the two statements stated in the beginning of the section.

We will treat all cases together apart from the N = 7 descendant of R8, which will be

discussed separately. We begin by constructing the forms τ1, τ2 and τ3 with respect all the

endomorphisms I, J , L, and so on, available in each case.

If one of these is non-vanishing, and so a descendant exists, then the holonomy of ∇̂
reduces. This is because the invariant forms of non-compact isotropy groups K ⋉ R8 are

of the type

e− ∧ ψ (9.15)

where ψ are forms in the “transverse” directions. Since τ1, τ2, τ3 and τ4 are not of this

type, one concludes that either the holonomy reduces or they should vanish.

Assuming that τ1 = τ2 = τ3 = τ4 = 0 with respect to all endomorphisms, one can

show, using the argument we have presented above to establish that τ5 is parallel in the

SU(4) ⋉ R8 case, that all the differences of Lee forms

θωI
− θωJ

, θωI
− θωL

, (9.16)

and so on, are also ∇̂-parallel. Since again these forms are not invariant under K ⋉ R8,

either they vanish or the holonomy of ∇̂ reduces to a subgroup of K ⋉ R8. If they do not

vanish, the holonomy reduces and so we have established the first statement. If they do

vanish, and so hol(∇̂) = K ⋉ R8, they imply the dilatino Killing spinor equations for all

parallel spinors. This establishes the second statement.

One can allow the holonomy to be reduced. The pattern of reductions depends on

the choice of parallel forms τ1, τ2, τ3, τ5 that will be allowed not to vanish. For example

if τ1 6= 0, but the rest are zero, then the holonomy reduces from SU(4) ⋉ R8 to SU(4).

Similarly if τ1, τ3 6= 0 but the rest vanish, then the holonomy reduces to SU(3) and so on.
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N StabΣ

1 R

Table 13: The first column denotes the number of supersymmetries and the second column the

stability subgroup of Killing spinor in Σ(P) = Spin(2, 1).

The pattern of reductions of holonomy in the other cases is more involved. For example,

consider the Sp(2) ⋉ R8 case. Suppose that τ1 6= 0. Then the holonomy reduces to Sp(2).

The holonomy can remain Sp(2) even if τ2 6= 0. This is because one can take τ2 = e+ ∧ωJ ,

where ωJ is the hermitian form of the J endomorphism associated with this case. Therefore

if one allows appropriate reductions of the holonomy group, many descendants may exist.

Finally consider the N = 7 descendant of R8. The dilatino Killing spinor equations

imply that τ1 = τ2 = τ3 = τ4 = τ5 = 0. So it may appear that for this descendant,

the holonomy does not reduce. However, this is not the case because there are additional

parallel forms which are the non-vanishing components of Hijk. In particular using (9.3),

hol(∇̂) ⊆ R8 and H+ij = (de+)ij = 0, it is easy to see that the three-form

Hrest =
1

3!
Hijke

i ∧ ej ∧ ek , (9.17)

constructed from the components (8.19) is ∇̂-parallel. A direct inspection of the integra-

bility condition reveals that if hol(∇̂) = R8, then Hrest = 0 and there is supersymmetry

enhancement to N = 8. If some components of (8.19) are non-vanishing the holonomy

reduces, i.e. hol(∇̂) ⊂ R8. If it reduces to the identity the background preserves at least

8 supersymmetries. This arises as a consequence of the conditions dH = R̂ = 0 and the

dilatino Killing spinor equation [32, 31]. The argument is also reviewed in section 13.

10. The descendants of G2

A basis in the space of parallel spinors is

1 + e1234 , e15 + e2345 . (10.1)

Moreover Σ(P) = Spin(2, 1) which acts with the Majorana representation on P. There is

a single descendant background with N = 1 supersymmetry. The dilatino Killing spinor

equation can be written as

A(1 + e1234) = 0 . (10.2)

The stability subgroup of this spinor is given in table 13.

10.1 Geometry of the gravitino Killing spinor equation

The condition that the gravitino Killing spinor equation imposes on the geometry is that

hol(∇̂) ⊆ G2, and has been investigated in [28]. This is equivalent to requiring that the

forms

e+ , e− , e1 , ϕ , (10.3)
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are ∇̂-parallel, where ϕ = Re [(e2+ie7)∧(e3+ie8)∧(e4+ie9)]−e6∧(e2∧e7+e3∧e8+e4∧e9)

is the G2 invariant three-form. It is clear that in this case there are three ∇̂-parallel one-

forms which we shall call collectively11 ea, a = +,−, 1. As we have already explained in

appendix A, the associated vector fields ea are Killing and iaH = ηabdeb.

The geometric condition that arises from the compatibility of ea and ϕ conditions, see

appendix A, is that

[(dea)ij ]
7 =

1

6
ηab∇bϕmn[iϕ

mn
j] , i, j, k, · · · = 2, 3, 4, 6, 7, 8, 9 . (10.4)

For this, we have used the decomposition Λ2(R7) = Λ2
7
⊕ Λ2

14
, where Λ2

14
= g2. The

remaining components of H are determined as

Hrest = −1

6
(d̃ϕ, ⋆ϕ)ϕ + ⋆d̃ϕ − ⋆(θ ∧ ϕ) , (10.5)

where

θ = −1

3
⋆ (⋆d̃ϕ ∧ ϕ) . (10.6)

Moreover, d̃ denotes the projection of the exterior derivative along the transverse directions

and the ⋆ operation has been taken with volume form dvol = e2∧e3∧e4∧e6∧· · ·∧e9. The

geometry of Riemannian seven-dimensional manifolds with G2-structure [40] compatible

with a connection with skew-symmetric torsion has been examined in detail in [9]. For use

later, a straightforward computation reveals that

θi = −1

6
Hkmn ⋆ ϕkmn

i . (10.7)

In addition, one also finds the geometric (integrability) condition

d̃ ⋆ ϕ = −θ ∧ ⋆ϕ . (10.8)

This is equivalent to requiring that the G2 class X2 associated with the 14 representation

vanishes, X2 = 0. This is the only condition required for the existence of (10.5). This

concludes the description of the geometry of the gravitino Killing spinor equation.

10.2 Geometry of N = 1 supersymmetric backgrounds

The solution of the dilatino equation is that which one derives for the Spin(7) ⋉ R8 back-

grounds [28]. Organizing the conditions in G2 representations, one has

∂+Φ = 0 , H+1i +
1

2
H+mnϕmn

i = 0 ,

∂1Φ − 1

12
Hijkϕ

ijk − 1

2
H−+1 = 0 ,

∂iΦ − 1

12
Hjkm ⋆ ϕjkm

i −
1

4
H1jkϕ

jk
i −

1

2
H−+i = 0 . (10.9)

11We have underlined one direction to emphasize that it is real.
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Using the relation between H and ea established in appendix A, the above conditions can

be rewritten as

∂+Φ = 0 , [e+, e1]i −
1

2
(de+)mnϕmn

i = 0 ,

∂1Φ − 1

12
Hijkϕ

ijk − 1

2
H−+1 = 0 ,

∂iΦ − 1

2
θi −

1

4
(de1)jkϕ

jk
i +

1

2
[e−, e+]i = 0 . (10.10)

Note that H−+1 can also be written in terms of the ∇̂-parallel vector fields e+, e−, e1

as H−+1 = −g([e−, e+], e1), see appendix A, but it is more convenient for simplicity of

notation to leave it as it is in the equations.

There are various ways to interpret the above conditions. First observe that Φ is in-

variant only under the action of one of the three Killing vector fields. The second condition

is expected from the N = 1 Spin(7) ⋉ R8 results and decomposition of spin(7) = g2 ⊕ Λ1
7

in g2 representations. The third condition relates the singlet in the decomposition of Hrest

in G2 representations to the structure constants of H−+1 and the derivative of Φ along e1.

Finally, the last condition can be thought of as a generalization of the conformal balanced

condition. The additional terms involve the rotation of e1 and the commutator [e−, e+].

Let h = R < e−, e+, e1 >. If [h, h] ⊆ h, i.e. the algebra of three ∇̂-parallel vector fields

closes, then the conditions (10.10) can be written as

∂+Φ = 0 , (de+)mnϕmn
i = 0 ,

∂1Φ − 1

12
Hijkϕ

ijk − 1

2
H−+1 = 0 ,

∂iΦ − 1

2
θi −

1

4
(de1)jkϕ

jk
i = 0 . (10.11)

In such a case, the spacetime is a principal bundle over a seven-dimensional base space,

see [28] and appendix A. There are two cases to consider. If the isometry group is abelian,

the curvature F− of the principal bundle is a g2 instanton, and F+ and F1 take values

in so(7). Though in the two latter cases in (10.4), (F+)7 and (F1)7 are related to the

covariant derivative of ϕ. It is clear from these that both the dilaton Φ and the three-form

bilinear ϕ may depend on the coordinates of the fiber and so they are not functions of the

base space only of the principal fibration. If the dilaton is invariant under e1, then the

singlet in the decomposition of H vanishes.

A similar conclusion can also be reached in the case that the Lie algebra of isometries

is sl(2, R). One of the differences is that the singlet in the decomposition of H does not

vanish even if the dilaton is invariant. In fact it is related to the structure constants of h

as it can be seen in the second equation in (10.11).

10.3 N = 2

The solution of the dilatino Killing spinor equation can be found12 in [28]. It turns out

12In [28], the solution has been organized in this way only for the case that the algebra of isometries

closes.
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that it can be written as

∂aΦ = 0 , ǫa
bc[eb, ec]i − (dea)mnϕmn

i = 0 , ǫ+−1 = 1 ,
1

6
Hijkϕ

ijk + H−+1 = 0 , ∂iΦ − 1

2
θi = 0 . (10.12)

The dilaton is invariant under all the three Killing vector fields. Moreover all (dea
ij)7

are related to the commutator ǫa
bc([Xb,Xc])i. In the case that the algebra of the three

isometries closes, Fa takes values in g2 and so the principal bundle connection is a g2

instanton. The geometry has been investigated in detail in [28] and we shall not explain

this further here.

The N = 1 and N = 2 differ. It is clear that the conditions that arise from the dilatino

Killing spinor equations in the two cases are not the same. The main differences lie in

the conditions on dea
ij and whether the dilaton is invariant under the isometries of the

backgrounds.

10.4 Reduction of holonomy

Reduction of the holonomy group can happen in backgrounds with both N = 1 and N =

2 supersymmetry. This is unlike the non-compact case where we have shown that the

Bianchi identities and the field equations force a reduction of the holonomy only for the

descendants. We shall again use the Bianchi identities to find the additional parallel forms

on the spacetime.

To begin, suppose that dH = 0. It has been shown in [28] that either [h, h] ⊆ h, where

h = R < ea >, a = −,+, 1, or the holonomy of hol(∇̂) ⊂ G2. This is because13 if dH = 0,

then the commutator of two ∇̂-parallel vector fields is ∇̂-parallel, see [28]. Thus either

[h, h] ⊆ h or there is an additional linearly independent vector field which is ∇̂-parallel

and so hol(∇̂) ⊂ G2, i.e. the holonomy reduces. This can also be shown using the Bianchi

identity (9.3), see also appendix A.

Applying the Bianchi identity (9.3) for B = a,C = b,D = c, we can show that Habc

are constant. In addition contracting the Bianchi identity (9.3) for B = i, C = i,D = k

with the ϕ, and using the condition that hol(∇̂) ⊆ G2, i.e.

R̂AB,aD = R̂AB,ijϕ
ij

k = 0 , (10.13)

one can also show that Hijkϕ
ijk is constant as well.

Using (10.13) and the Bianchi identity (9.3) for A = a,B = i, C = j, one can show

that the Lie-algebra valued one-form

τa
1 =

1

2
dea

ij ϕij
k ek , (10.14)

is ∇̂-parallel. Since τa
1 are linearly independent from ea, either τa

1 vanishes or the holonomy

of ∇̂ reduces to a subgroup of G2. Observe that τa
1 is the 7-dimensional component of d̃ea

in the decomposition of two-forms in G2 representations.

13In fact a necessary is for H to be invariant.
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Substituting B = a in the field equations (9.9) and using hol(∇̂) ⊂ G2, it is easy to

see that

τ2 = ∂aΦ ea (10.15)

is ∇̂-parallel. Since ea are ∇̂-parallel as well, this implies that ∂aΦ = va are constant.

Next write the G2 holonomy condition as

1

2
R̂AB,kl ⋆ ϕkl

ij = R̂AB,ij . (10.16)

Setting B = m, contracting m and i, using the field equations (9.9) and the Bianchi

identity (9.3), we find that

τ3 = (2∂iΦ − θi)e
i (10.17)

is ∇̂-parallel. Since this one-form is linearly independent from ea either τ3 = 0 or hol(∇̂) ⊂
G2 and so the holonomy reduces.

First consider the consequences of the above ∇̂-parallel forms in the N = 2 back-

grounds. If one insist that hol(∇̂) = G2, then the field equations and dH = 0 imply

all the conditions (10.12) that arise from the dilatino Killing spinor equation apart from

∂aΦ = va = 0 and Hijkϕ
ijk = 0 if h is abelian, or Hijkϕ

ijk +6H−+1 = 0 if h is non-abelian,

respectively. (In the non-abelian case a simple argument implies that va = 0.) This is un-

like the non-compact case, where under the same assumptions the gravitino Killing spinor

equation implies all the conditions of the dilatino Killing spinor equation for the N = L

backgrounds.

Next consider the applications of the additional parallel forms in N = 1 backgrounds.

If either [h, h] * h and/or τa
1 6= 0, then hol(∇̂) ⊂ G2 and so the holonomy reduces. However,

unlike the non-compact cases, there may be backgrounds with N = 1 supersymmetry and

hol(∇̂) = G2. For example take h abelian, τa
1 = 0 and 12v1 −Hijkϕ

ijk = 0. This is a linear

dilaton background.

11. The descendants of SU(3)

A complex basis in the space of parallel SU(3)-invariant spinors P is

1 , e15 . (11.1)

In this case Σ(P) = Spin(3, 1) × U(1), where Spin(3, 1) = SL(2, C) acts on P with the

Majorana spinor representation and U(1) is generated by i
2 (Γ22̄ + Γ33̄). The generic orbit

of Σ(P) on P is of co-dimension one. To see this observe that the generic orbit of Spin(3, 1)

on P is of co-dimension two and so one can choose

ǫ = λ1(1 + e1234) + iλ2(1 − e1234) , λ2
1 + λ2

2 = 1 . (11.2)

Moreover U(1) rotates the two spinors that appear in the expression above. So

ǫ = λ1(1 + e1234) . (11.3)

It is straightforward to choose the Killing spinors in all cases. For this observe that Σ(R <

1 + e1234 >) = (Spin(1, 1) × U(1)) ⋉ R2. We simply state the results in the appropriate

sections. The stability groups of the Killing spinors are summarized in table 14.
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1 U(1) ⋉ R2

2 R2, {1}

Table 14: The first column denotes the number of supersymmetries and the second column the

stability subgroup of Killing spinor in Σ(P) = Spin(3, 1) × U(1).

11.1 Geometry of the gravitino Killing spinor equation

The gravitino Killing spinor equation implies that hol(∇̂) ⊆ SU(3). This is equivalent to

requiring [28] that the forms

ea , ω = ωI = −e2 ∧ e7 − e2 ∧ e8 − e4 ∧ e9 ,

χ = (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) (11.4)

are ∇̂-parallel, where a = +,−, 1, 1̄. So there are the four ∇̂-parallel vector fields and six

transverse directions. In this case, k⊥ is spanned by (2,0) and (0,2) forms with respect

to I, and ω in Λ2(R6). As we have explained in appendix A, Hk⊥

aij, i, j = 2, 3, 4, 7, 8, 9, is

determined both by dea and the Levi-Civita covariant derivative of the remaining parallel

forms. The compatibility between the different ways of expressing H leads to the geometric

conditions

(dea)
2,0+0,2
ij = −1

2
[iI(∇aω)]ij

(dea)ijω
ij =

1

6
(∇aReχ)k1k2k3

Imχk1k2k3 . (11.5)

Moreover

Hrest = −iI d̃ω − 2N = ⋆d̃ω − ⋆(θω ∧ ω) + N , (11.6)

where θω = − ⋆ (⋆d̃ω ∧ ω). One also finds the additional geometric constraints

W2 = 0 , θω = θReχ , (11.7)

where again the vanishing of the Gray-Hervella class W2 implies that the Nijenhuis ten-

sor N is skew symmetric, and θReχ = −1
2 ⋆ (⋆d̃Reχ ∧ Reχ) is the Lee form of Reχ.

The geometry of six-dimensional Riemannian manifolds with an SU(3)-structure [18] and

compatible connection with skew-symmetric torsion have been extensively investigated,

see [1, 2, 7, 8, 12, 13, 15 – 17, 20, 21]. The equality of the two Lee forms can also be

expressed in SU(3) classes as W4 = W5.

It has been explained in [28] if [h, h] ⊆ h, where h = R < ea >, then h is either abelian,

R ⊕3 u(1), R⊕ su(2), u(1)⊕ sl(2, R), or a pp-wave algebra. This concludes the description

of the geometry of the gravitino Killing spinor equation.
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11.2 N=1

In this case the dilatino Killing spinor equation is

A(1 + e1234) = 0 . (11.8)

The solution of the dilatino Killing spinor equation decomposed in SU(3) representations

is

∂+Φ = 0 , H+11̄ + H+n
n = 0 , − H+1̄n̄ +

1

2
H+pqǫ

pq
n̄ = 0 ,

∂1̄Φ − 1

6
Hpqnǫpqn − 1

2
H1̄n

n − 1

2
H−+1̄ = 0 ,

∂n̄Φ +
1

2
H1pqǫ

pq
n̄ − 1

2
Hn̄p

p − 1

2
Hn̄11̄ −

1

2
H−+n̄ = 0 , (11.9)

where p, q, n = 2, 3, 4. The dilaton is invariant under the e+ isometry of the spacetime but

not necessarily the rest. The remaining conditions can be interpreted in different ways.

For example observe that the above condition implies that

de− ∈ spin(7) ⊕s R8 ⊂ so(8) ⊕s R8 . (11.10)

Alternatively, they can be seen as relating the structure constants and commutators of the

Killing vector fields to the su(3)⊥ components of de−. In particular (11.9) can be rewritten

as

∂+Φ = 0 , H+11̄ −
i

2
(de+)ijω

ij = 0 , [e+, e1̄]n̄ +
1

2
(de+)pqǫ

pq
n̄ = 0 .

∂1̄Φ − 1

24
Npqnǫpqn +

i

4
(de1̄)ijω

ij − 1

2
H−+1̄ = 0 ,

∂n̄Φ +
1

2
(de1)pqǫ

pq
n̄ − 1

2
θn̄ +

1

2
[e1, e1̄]n̄ +

1

2
[e−, e+]n̄ = 0 . (11.11)

If [h, h] ⊆ h, then one finds that

∂+Φ = 0 , H+11̄ −
i

2
(de+)ijω

ij = 0 , (de+)2,0 = 0 .

∂1̄Φ − 1

24
Npqnǫpqn +

i

4
(de1̄)ijω

ij − 1

2
H−+1̄ = 0 ,

∂n̄Φ +
1

2
(de1)pqǫ

pq
n̄ − 1

2
(θω)n̄ = 0 . (11.12)

It is clear from this that although L+ω = 0 this is not the case for the rest of the parallel

vector fields. In addition in all cases Laχ 6= 0, unless h is abelian in which case L+χ = 0.

This is in agreement with results in the maximal SU(3) case. Observe that even if one sets

N = 0, the geometry of the Killing spinor equations is different from that of the N = 4

case in [28].

11.3 N=2

The dilatino Killing spinor equation is either

A1 = 0 , (11.13)

with StabΣ(1) = R2 or

A(1 + e1234) = 0 , A(e15 + e2345) = 0 . (11.14)

with StabΣ(1 + e1234, e15 + e2345) = {1}. So there are two cases to consider.

– 38 –



J
H
E
P
0
8
(
2
0
0
7
)
0
7
4

11.3.1 A1 = 0

The solution of the dilatino Killing spinor equation A1 = 0 is

∂+Φ = 0 , H+11̄ + H+n
n = 0 , H+1n = H+mn = H1mn = Hmpq = 0 ,

∂1̄Φ − 1

2
H1̄n

n − 1

2
H−+1̄ = 0 , ∂n̄Φ − 1

2
Hn̄p

p − 1

2
Hn̄11̄ −

1

2
H−+n̄ = 0 , (11.15)

The dilaton is invariant only under the isometries generated by e+. The above conditions

imply that

∂+Φ = 0 , [e+, e1]n = 0 , (de−)2,0 = 0 , (de1̄)2,0 = 0 ,

H+11̄ −
i

2
(de+)ij ωij = 0 , Nijk = 0 , ∂1̄Φ +

i

4
(de1̄)ijω

ij − 1

2
H−+1̄ = 0 ,

∂n̄Φ − 1

2
(θω)n̄ +

1

2
[e1, e1̄]n̄ +

1

2
[e−, e+]n̄ = 0 . (11.16)

The difference between N = 1 and N = 2 is the vanishing of N and the restriction on de1̄

to be a (2,0)-form. Again Laχ 6= 0. In particular, W1 = W2 = 0 for these backgrounds. If

[h, h] ⊆ h, the last condition is modified to

∂n̄Φ − 1

2
θn̄ = 0 . (11.17)

11.3.2 A(1 + e1234) = A(e15 + e2345) = 0

The solution of the dilatino Killing spinor equation in this case is

∂+Φ = ∂−Φ = ∂1Φ = 0 , H+11̄ + H+n
n = 0 , H−11̄ − H−n

n = 0 ,

H−+1̄ + H1̄n
n = −1

6
Hnpqǫ

npq − 1

6
Hn̄p̄q̄ǫ

n̄p̄q̄ ,

H+1̄n̄ =
1

2
H+pqǫ

pq
n̄ , H−1̄n̄ = −1

2
H−pqǫ

pq
n̄ ,

H−+n̄ + H11̄n̄ =
1

2
H1pqǫ

pq
n̄ +

1

2
H1̄pqǫ

pq
n̄ ,

∂1̄Φ − 1

12
Hnpqǫ

npq +
1

12
Hn̄p̄q̄ǫ

n̄p̄q̄ = 0 ,

∂n̄Φ − 1

2
Hn̄p

p − 1

4
H1̄pqǫ

pq
n̄ +

1

4
H1pqǫ

pq
n̄ = 0 . (11.18)

The conditions can be rewritten as

∂+Φ = ∂−Φ = ∂1Φ = 0 ,
1

3!
ǫa

bcdHbcd −
1

2
(dea)ijω

ij = 0 , a = +,−
1

3!
ǫ1̄

bcdHbcd −
1

2
(de1̄)ijω

ij = −
√

2

6
Nijk Reχijk

[e+, e1̄]n̄ = −1

2
(de+)pqǫ

pq
n̄ , [e−, e1̄]n̄ =

1

2
(de−)pqǫ

pq
n̄ ,

[e−, e+]n̄ + [e1, e1̄]n̄ = −1

2
(de1 + de1̄)pq ǫpq

n̄ ,

∂6Φ +
1

92
Nijk Imχijk = 0 , ∂n̄Φ − 1

2
(θω)n̄ +

1

4
(de1 − de1̄)pq ǫpq

n̄ = 0 . (11.19)

The dilaton is invariant under the three out of four isometries of the background.
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11.4 N=3

The dilatino Killing spinor equation is

A(e15 + e2345) = 0 , A1 = 0 . (11.20)

The solution to the dilatino Killing spinor equations is

∂+Φ = ∂−Φ = ∂1Φ = 0 , H+11̄ + H+n
n = 0 , H−11̄ − H−n

n = 0 , H−+1̄ + H1̄n
n = 0 ,

H−1̄n̄ = −1

2
H−pqǫ

pq
n̄ , H+1n = H+pq = 0 , Hpqn = H1pq = 0 ,

H−+n̄ =
1

2
H1̄pqǫ

pq
n̄ − Hn̄11̄ , ∂n̄Φ − 1

2
Hn̄p

p − 1

4
H1̄pqǫ

pq
n̄ = 0 (11.21)

These conditions can be rewritten as

∂aΦ = 0 ,
1

3!
ǫa

bcdHbcd −
1

2
(dea)ijω

ij = 0 , (de−)2,0 = (de1̄)2,0 = 0 ,

Nijk = 0 , [e−, e1̄]n̄ =
1

2
(de−)pqǫ

pq
n̄ , [e−, e+]n̄ + [e1, e1̄]n̄ = −1

2
(de1̄)pqǫ

pq
n̄ ,

[e+, e1̄]n̄ = 0 , ∂n̄Φ − 1

2
(θω)n̄ − 1

4
(de1̄)pqǫ

pq
n̄ = 0 . (11.22)

Observe that if (de+)2,0 = (de1)2,0 = 0, then the N = 3 backgrounds admit an additional

supersymmetry and so they admit four supersymmetries. We can show this by comparing

the conditions above with those of N = 4 backgrounds stated below. The same conclusion

holds if [h, h] ⊆ h.

11.5 N=4

The solution to the dilatino Killing spinor equation given in [28] can be summarized as

∂aΦ = 0 ,
1

3!
ǫa

bcdHbcd −
1

2
Haijω

ij = 0 , (dea)2,0 = 0 ,

Nijk = 0 ,
1

2
ǫab

cdHcdi − HabjI
j
i = 0 , ∂iΦ − 1

2
θi = 0 . (11.23)

In turn, these can be rewritten as

∂aΦ = 0 ,
1

3!
ǫa

bcdHbcd −
1

2
(dea)ijω

ij = 0 , (dea)2,0 = 0 ,

Nijk = 0 ,
1

2
ǫab

cd [ec, ed]i − [ea, eb]jI
j
i = 0 , ∂iΦ − 1

2
θi = 0 . (11.24)

The case that has been investigated in detail in [28] is that for which the algebra of four

isometries closes. We shall not expand on this further here.

11.6 Reduction of holonomy

As in the G2 case we have already investigated, we take that dH = 0, hol(∇̂) ⊆ SU(3)

and use the field equations to identify the additional ∇̂-parallel forms. As has been shown

in [28], and elaborated on in the G2 case, either [h, h] ⊆ h, h = R < ea >, or the holonomy

of hol(∇̂) ⊂ SU(3). This is because the commutator of two parallel ∇̂-vectors is ∇̂-parallel.
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Similarly, one can show that Habc are constant and they can be identified with the structure

constants of h.

Applying the Bianchi identity (9.3) for B = a,C = p,D = q̄, contracting it with δpq̄

and using the condition that hol(∇̂) ⊆ SU(3), i.e.

R̂AB,aC = 0 , R̂AB,p
p = 0 , (11.25)

one can also show that

τ1 = iHaq
q ea (11.26)

are ∇̂-parallel. Since ea are also ∇̂-parallel, iHaq
q = ua are constants. Similarly one can

show that

τa
2 =

1

2
Ha

pqe
p ∧ eq , (11.27)

are also ∇̂-parallel. In this case, either τa
2 = 0 or hol(∇̂) ⊂ SU(3).

Next applying the Bianchi identity (9.3) for B = p,C = q,D = n, one can show that

τ3 =
1

3!
Npqn ep ∧ eq ∧ en =

4

3!
Hpqn ep ∧ eq ∧ en , (11.28)

is ∇̂-parallel, see [38, 39, 9] for the properties of the Nijenhuis tensor of Riemannian almost

complex manifolds with compatible ∇̂-connection. Since Reχ and Imχ are also (3,0) and

(0,3) and ∇̂-parallel,

τ3 = N = aReχ + b Imχ , (11.29)

for some constants a, b ∈ R.

Using similar arguments to those we have made for the G2 case, one can also show

that

τ4 = ∂aΦ ea (11.30)

and

τ5 = (2∂iΦ − (θω)i) ei (11.31)

are ∇̂-parallel. Since ea are also ∇̂-parallel, ∂aΦ = va are constants. Similarly, either

τ5 = 0 or hol(∇̂) ⊂ SU(3).

The implication that these additional parallel forms have on the N = L = 4 super-

symmetric backgrounds is as follows. It is clear that in this case the conditions dH = 0,

hol(∇̂) = SU(3) and the field equations are not sufficient to imply the dilatino Killing

spinor equations from the gravitino ones. For this to be the case, one has to impose in

addition τ3 = τ4 = 0 and relate τ1 to the structure constants of h.

The condition hol(∇̂) = SU(3) imposed on the N = 3 descendant implies enhancement

of supersymmetry to N = 4. Backgrounds with N = 3 supersymmetry may exist but these

require reduction of the holonomy. On the other hand backgrounds with N = 1 and N = 2

supersymmetry may exist even if hol(∇̂) = SU(3). For example, these can be linear dilaton

backgrounds.
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N StabΣ

1 (SU(2) × SU(2)) ⋉ R4

2 (U(1) × SU(2)) ⋉ R4, U(1) × U(1)

3 SU(2) ⋉ R4, U(1), {1}
4 SU(2) ⋉ R4, U(1), {1}

Table 15: The first column denotes the number of supersymmetries and the second column the

stability subgroup of Killing spinor in Σ(P) = Spin(5, 1) × SU(2).

12. The descendants of SU(2)

A (complex) basis in the space of parallel spinors with Stab(ǫ1, . . . , ǫ8) = SU(2) is

1 , e12 , e15 , e25 . (12.1)

The subspace P in S+ spanned by the above spinors can be identified with the positive

chirality symplectic Majorana-Weyl representation ∆+s
8

of Spin(5, 1). To see this, first ob-

serve that Stab(P) = Spin(5, 1)×Spin(4), where the Lie algebra of Spin(5, 1) is spanned by

Clifford algebra directions 0, 5, 1, 6, 2, 7 and the Lie algebra of Spin(4) = SU(2) × SU(2) is

spanned by the Clifford algebra directions 3, 4, 8, 9. In addition we have Stab(ǫ1, . . . , ǫ8) =

SU(2) ⊂ Spin(4) ⊂ Stab(P), so Σ(P) = Stab(P)/Stab(ǫ1, . . . , ǫ8) = Spin(5, 1) × SU(2). It

is known that Spin(5, 1) = SL(2, H) and that Spin(5, 1) does not admit Majorana-Weyl rep-

resentations. However, it admits symplectic Majorana-Weyl representation after twisting

with SU(2), i.e. taking two copies of the positive chirality (complex) Weyl representation

and imposing a symplectic reality condition. This reality condition is precisely that in-

herited from the reality condition of the Majorana-Weyl spinors S+ of Spin(9, 1). In the

explicit basis (12.1) of P, one can show that the Lie algebra su(2) of the SU(2) subgroup

of Σ(P) can be identified as su(2) = R < Γ34,Γ3̄4̄, i
2(Γ33̄ + Γ44̄) >.

One can similarly examine Q which is required for investigating the normal spinors

to the Killing spinors. In particular, one can show that Q = ∆−s
8

, where ∆−s
8

is the

negative chirality Majorana-Weyl symplectic representation of Spin(5, 1). Furthermore,

Σ(Q) = Spin(5, 1) × SU(2). The N = 8 supersymmetric backgrounds have already been

investigated in [28]. These are the backgrounds for which all parallel spinors are Killing.

So it remains to investigate the backgrounds with N < 8. For 4 < N < 8, we shall use

Σ(Q) to choose directions for the normal spinors while for 1 ≤ N ≤ 4, we shall use Σ(P)

to choose directions in the space of parallel spinors. We shall not elaborate on the choice

of normals to the Killing spinors for N > 4 because it follows directly from the choice of

Killing spinors for N ≤ 4. So we shall simply state the dilatino Killing spinor equations in

each case. The stability groups of the Killing spinors are summarized in table 15.

12.1 Geometry of the gravitino Killing spinor equation

The condition that hol(∇̂) ⊆ SU(2) is equivalent to requiring that the forms

ea , ωI = −(e3 ∧ e8 + e4 ∧ e9) , ωJ + iωK = (e3 + ie8) ∧ (e4 + ie9) (12.2)
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are ∇̂-parallel, where a = +,−, 1, 1̄, 2, 2̄. As in previous cases, iaH = (dea) and in addition

one has that

(dea)
2,0+0,2
ij = −1

2
[iI(∇aω)]ij ,

(dea)ij ωij
I = (∇aωJ)ij ωij

K , (12.3)

where i, j = 3, 4, 8, 9. Furthermore, one finds that

Hrest = −iI d̃ωI = −iJ d̃ωJ ,

N (I)ijk = N (J)ijk = 0 . (12.4)

The geometry of Riemannian four-dimensional manifolds with an SU(2)- structure and

compatible connection with skew-symmetric torsion has been extensively investigated,

see [22, 1, 24, 5]. As in previous cases, we define h = R < ea >, and for the descen-

dants [h, h] * h. However if we demand [h, h] ⊆ h, h is a Lorentzian (5+1)-dimensional Lie

algebra. These have been classified and the have been found to be

R ⊕5 u(1) , R ⊕2 u(1) ⊕ su(2) , sl(2, R) ⊕3 u(1) ,

sl(2, R) ⊕3 su(2) , cw4 ⊕2 u(1) , cw6 , (12.5)

where cwn denote pp-wave algebras of dimension (n− 1) + 1. For N = 8 backgrounds, the

dilatino Killing spinor equation implies that [h, h] ⊆ h and h is self-dual. These have been

shown in [45] to be isomorphic to R ⊕5 u(1), sl(2, R) ⊕ su(2) and cw6.

12.2 N=1

The group action of Σ(P) = Spin(5, 1)×SU(2) on P can be most easily described in terms

of quaternions. First identify P = H2. Then Spin(5, 1) = SL(2, H) acts on P from the left

with quaternionic matrix multiplication while SU(2) acts with quaternionic multiplication

from the right, i.e.

x −→ Lx ā , x ∈ P , L ∈ SL(2, H) , a ∈ SU(2) = Sp(1) (12.6)

where ā is the quaternionic conjugate of a. It is easy then to see that Σ(P) has a single

orbit in P of codimension zero. The stability subgroup is (SU(2)L × SU(2)R) ⋉ R4. So a

representative can be chosen as 1 + e1234. In turn, the dilatino Killing spinor equation is

A(1 + e1234) = 0 . (12.7)

The solution has been given in (3.9), and the conditions can be interpreted in a similar

way. A different way of organizing the conditions is in terms of SU(2) representations. This

allows to compare the results with the N > 1 cases. In particular, we find that

∂+Φ = 0 , H+11̄ + H+22̄ + (de+)n
n = 0 , − H+1̄2̄ +

1

2
(de+)mnǫmn = 0 ,

[e+, e1̄]n̄ − [e+, e2]mǫm
n̄ = 0 ,

∂1̄Φ − 1

2
(de2)mnǫmn − 1

2
(de1̄)n

n − 1

2
H1̄22̄ −

1

2
H−+1̄ = 0 ,

∂2̄Φ +
1

2
(de1)mnǫmn − 1

2
(de2̄)m

m − 1

2
H2̄11̄ −

1

2
H−+2̄ = 0 ,

∂n̄Φ − [e1, e2]mǫm
n̄ +

1

2
[e2, e2̄]n̄ +

1

2
[e1, e1̄]n̄ +

1

2
[e−, e+]n̄ − 1

2
(θωI

)n̄ = 0 , (12.8)
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where m,n = 3, 4 are Hermitian indices. It is clear that even if we take [h, h] ⊆ h, h is

not necessarily a self-dual Lie algebra. In fact there is not a condition on the structure

constants of h. The rotation d̃ea of the ∇̂-vector fields is also not restricted an a priori to

lie in some subalgebra of so(4). The dilaton is invariant only under e+.

12.3 N=2

12.3.1 Killing spinors

The first Killing spinor ǫ1 can be chosen as in the N = 1 case above, ǫ1 = ǫ = 1+ e1234. To

continue, we shall first explain how the Stab(ǫ) = (SU(2)L × SU(2)R) ⋉ R4 acts on P/K,

where K = R < ǫ >. First identify K with the real axis in one of the quaternionic subspaces

of P = H2 and write P = R < 1 + e1234 > ⊕ImH ⊕ H. Thus we can set P/K = ImH ⊕ H.

Then SU(2)L × SU(2)R acts as

(x, y) → (axā, byā) , x ∈ ImH , y ∈ H , a ∈ SU(2)L , b ∈ SU(2)R . (12.9)

In addition the R4 subgroup acts with null boosts on P with fixed point set R < 1+e1234 >

⊕ImH. In the explicit basis for P in (12.1), su(2)L = R < Γ1̄2̄+Γ34,Γ12+Γ3̄4̄, i
2(Γ11̄+Γ22̄−

Γ33̄ − Γ44̄) >, su(2)R = R < Γ12̄,Γ1̄2, i
2(Γ11̄ − Γ22̄) > and R4 = R < Γ−1,Γ−1̄,Γ−2,Γ−2̄ >.

In addition, ImH = R < i(1 − e1234), (e12 − e34), i(e12 + e34) > and H is spanned by the

rest of the basis.

To continue first observe that Σ(K) = (Spin(1, 1) × SU(2)L × SU(2)R) ⋉ R4, where

Spin(1, 1) is generated by Γ−+. Σ(K) has two types of orbits on P/K. One has codimension

zero in ImH and the other has codimension zero in P/K. To see this, consider the orbits of

SU(2)L ×SU(2)R in ImH⊕H. There are three type of orbits. One orbit is an S2 contained

in ImH with stability subgroup U(1)L × SU(2)R, another is an S3 contained in H with

stability subgroup (SU(2)L × SU(2)R)/SU(2) = SU(2) and the third is a codimension two

(SU(2)L × SU(2)R)/U(1) orbit in ImH ⊕ H. The latter orbit has representatives which

have non-vanishing components in both ImH and H subspaces. However one can show

that such a representative lies in the same orbit of Σ(K) as that of the S3 using an R4

transformation. This can be easily seen by choosing the representative of the third orbit

as

iλ1(1 − e1234) + λ2(e15 + e2345) , λ1, λ2 6= 0 . (12.10)

Clearly an R4 transformation along the Γ−6 direction will transform a representative along

e15 + e2345 to the representative above. Thus Σ(K) has only two orbits, one with stability

subgroup (U(1)L×SU(2)R)⋉R4 and the other stability subgroup SU(2) in Σ(K). Therefore

there are two choices for the second normal spinor each associated with the two orbits. Thus

we can choose either

ǫ2 = i(1 − e1234) (12.11)

which lies in ImH, or

ǫ2 = (e15 + e1235) (12.12)

which lies in H. So there are two dilatino Killing spinor equations to consider.
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12.3.2 A1 = 0

The solution of this Killing spinor equation has been given in (3.12). Decomposing the

solution in SU(2) representations as in the N = 1 case, one finds,

∂+Φ = 0 , H+12 = 0 , [e+, e1]n = [e+, e2]n = [e1, e2]n = 0 ,

(de+)mn = (de1)mn = (de2)mn = 0 , H+11̄ + H+22̄ + (de+)n
n = 0 .

∂1̄Φ− 1

2
(de1̄)n

n− 1

2
H1̄22̄−

1

2
H−+1̄ = 0 , ∂2̄Φ − 1

2
(de2̄)p

p − 1

2
H2̄11̄ −

1

2
H−+2̄ = 0 ,

∂n̄Φ +
1

2
[e2, e2̄]n̄ +

1

2
[e1, e1̄]n̄ +

1

2
[e−, e+]n̄ − 1

2
(θωI

)n̄ = 0.(12.13)

In general [h, h] * h. Moreover d̃e− ∈ u(2) and d̃e1̄, d̃e2̄ ∈ u(2)⊕s Λ0,2(C2) and d̃e+ ∈ so(4).

The rotations can be restricted further if for example h is abelian. The dilaton is invariant

only under e+.

12.3.3 A(1 + e1234) = A(e15 + e2345) = 0

The solution of the latter is given in [28], see also (10.12). Expressing it in SU(2) repre-

sentations, one finds

∂+Φ = ∂−Φ = ∂1Φ = 0 ,

H+11̄+H+22̄+(de+)n
n = 0 ,

H−11̄−H+22̄−(de−)n
n = 0 ,

H−+1̄ + H1̄22̄ + (de1̄)n
n = −1

2
(de2)pqǫ

pq − 1

2
(de2̄)p̄q̄ǫ

p̄q̄ ,

H+1̄2̄ =
1

2
(de+)pqǫ

pq ,

[e+, e1̄]n̄ = [e+, e2]pǫ
p
n̄ ,

H−12̄ = −1

2
(de−)pqǫ

pq ,

[e−, e1]n̄ = −[e−, e2]pǫ
p
n̄ ,

H−+2̄ + H11̄2̄ =
1

2
(de1)pqǫ

pq +
1

2
(de1̄)pqǫ

pq ,

[e−, e+]n̄ + [e1, e1̄]n̄ = [e1, e2]p ǫp
n̄ + [e1̄, e2]p ǫp

n̄ ,

∂1̄Φ − 1

4
(de2)pq ǫpq +

1

4
(de2̄)p̄q̄ ǫp̄q̄ = 0 ,

∂2̄Φ− 1

2
(de2̄)p

p− 1

4
(de1̄)pqǫ

pq+
1

4
(de1)pqǫ

pq = 0 ,

∂n̄Φ+
1

2
[e1̄, e2]pǫ

p
n̄−

1

2
[e1, e2]pǫ

p
n̄+

1

2
[e2, e2̄]n̄−

1

2
(θωI

)n̄ = 0 . (12.14)

There is no apparent restriction on the rotations d̃ea unless h is abelian in which case

d̃e+, d̃e−, d̃e1 ∈ su(2). The dilaton is invariant under e+, e− and e1 ∇̂-parallel vectors.

12.4 N=3

12.4.1 Killing spinors

There are two cases to investigate depending on the choice of the first two Killing spinors.

These lead to different results, so they will be examined separately.

Suppose that ǫ1 = 1 + e1234 and ǫ2 = i(1 − e1234) and K is spanned by these two

spinors. After some computation one can show that Stab(K) = (Spin(1, 1) × Spin(2)L ×
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Spin(2)R × Sp(1)) ⋉ R4. To see how this acts, first write P/K = R2 ⊕ H. Then the action

of the subgroup Spin(2)L × Spin(2)R × Sp(1) is

(x, y) −→ (Lx, ayR−1) , L ∈ Spin(2)L , a ∈ Sp(1) , R ∈ Spin(2)R . (12.15)

In particular in the basis (12.1), sp(1) = R < i
2 (Γ11̄ − Γ22̄),Γ12̄,Γ1̄2 >, spin(2)L = R <

i
2 (Γ11̄ + Γ22̄) >, spin(2)R = R < i

2(Γ33̄ + Γ44̄) >, Spin(1, 1) acts with boosts in the Γ−+

direction and R4 = R < Γ−1,Γ−1̄,Γ−2,Γ−2̄ >. In addition, R2 = R < e12 − e34, i(e12 +

e34) > and H spans the rest of the directions. Observe that both Spin(2)L and Spin(2)R
act on K. There are two type of orbits of Stab(K) in P/K, one is co-dimension zero in R2

and the other is codimension zero in P/K. To see this, observe that the orbit of Sp(1) in

H is an S3 sphere and that Spin(2)L × Spin(2)R × Sp(1) has three types of orbits in P/K.

However, the representatives of two of the orbits are related by an R4 transformation as in

the N = 2 case. Choosing representatives for the two orbits of Stab(K) in P/K the third

Killing spinor can be chosen either as

ǫ3 = i(e12 + e34) (12.16)

or as

ǫ3 = e15 + e2345 . (12.17)

Consequently, the dilatino Killing spinor equation becomes either

A1 = A(e12 + e34) = 0 (12.18)

or

A1 = A(e15 + e2345) = 0 (12.19)

respectively.

Next suppose that ǫ1 = 1 + e1234 ǫ2 = e15 + e2345 and that K is spanned by these

two spinors. It turns out that Stab(K) = SL(2, R)× SO(3), and SL(2, R) = Spin(2, 1) acts

on K with the two-dimensional representation. To see how this group acts on P/K write

P/K = R3 ⊕ R3. Then we have

(x,y) −→ (Ox, Oy)L−1 , O ∈ SO(3) , L ∈ SL(2, R) . (12.20)

In the basis (12.1), we have that14 sl(2, R) = R < Γ−+,Γ+1,Γ−1 >, so(3) = R < i
2(Γ33̄ +

Γ44̄ − 2Γ22̄),Γ12̄ − Γ1̄2̄ − Γ34,Γ1̄2 −Γ12 − Γ3̄4̄ >, and one of the R3 subspaces is spanned by

R3 = R < i(e5 − e12345), e125 − e345, i(e125 + e345) > and the other by the rest elements of

the basis.

To find the orbits of Stab(K) consider the invariant

I = x2y2 − (x · y)2 , (12.21)

14Γ1 denotes the gamma matrix along the real direction 1 to distinguish it from that the complex direction

1 used for the generators of SO(3).
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where x · y is the Euclidean inner product of x and y, x2 = x · x, and similarly for y.

If I 6= 0, there is a co-dimension one orbit (SL(2, R) × SO(3))/SO(2) represented by two

non-colinear non-vanishing elements x and y. If I = 0, then either y = 0 or x = 0 or x is

colinear to y. In the first two cases, the orbits are codimension zero in the first subspace

R3 or the second subspace R3, respectively. The latter case is not independent because

there is always an SL(2, R) transformation to transform ±(x,x) to an element in one of

the two R3 subspaces of P/K. Therefore there are three types of orbits to consider and

the representatives can be chosen as

ǫ3 = i(1 − e1234) , (12.22)

or

ǫ3 = i(e15 − e2345) , (12.23)

or

ǫ3 = i(1 − e1234) + (e25 − e1345) . (12.24)

In the latter case we have used the freedom to choose the overall scale of the Killing spinor

to be one.

To give the independent Killing spinor equations, observe that ǫ1 = 1 + e1234, ǫ2 =

e15 + e2345, ǫ3 = i(e15 − e2345) and ǫ1 = 1 + e1234, ǫ2 = i(1 − e1234), ǫ3 = e15 + e2345

are related by a Spin(9, 1) transformation. Consequently, two of the above three case are

related to the two cases described before. Thus the only additional independent dilatino

Killing spinor equation is

A(1 + e1234) = A(e15 + e2345) = A[i(1 − e1234) + e25 − e1345] = 0 . (12.25)

12.4.2 A1 = A(e12 + e34) = 0

The solution can be found in [28] and it can be re-expressed in SU(2) representations as

∂+Φ = 0 ,

H+12 = H+11̄ + H+22̄ = 0 ,

[e+, e1]n = [e+, e2]n = [e+, e2]n̄ − [e+, e1̄]pǫ
p
n̄ = 0 ,

[e1̄, e2̄]n + [e1, e1̄]p̄ǫ
p̄
n + [e2, e2̄]p̄ǫ

p̄
n = 0 ,

[e1̄, e2̄]n̄ = 0 ,

(de+)pq = (de+)n
n = 0 , (de1̄)n̄m̄ = (de2̄)n̄m̄ = 0 ,

1

2
(de2)n̄m̄ǫn̄m̄ + (de1̄)m

m = 0 , − 1

2
(de1)n̄m̄ǫn̄m̄ + (de2̄)m

m = 0 ,

∂1̄Φ +
1

4
(de2)n̄m̄ǫn̄m̄ − 1

2
H22̄1̄ +

1

2
H+−1̄ = 0 ,

∂2̄Φ − 1

4
(de1)n̄m̄ǫn̄m̄ − 1

2
H11̄2̄ +

1

2
H+−2̄ = 0 ,

∂n̄Φ +
1

2
[e1̄, e2̄]pǫ

p
n̄ − 1

2
[e+, e−]n̄ − 1

2
(θω)n̄ = 0 . (12.26)

The dilaton is invariant only under the action of e+, and d̃e− ∈ su(2).
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12.4.3 A1 = A(e15 + e2345) = 0

The solution can be easily found by combining (10.12) with (3.12). Expressing the condi-

tions in SU(2) representations, one finds

∂+Φ = ∂−Φ = ∂1Φ = 0 , H+11̄ + H+22̄ + (de+)n
n = 0 ,

H−11̄ − H−22̄ − (de−)n
n = 0 , H−+1̄ + H1̄22̄ + (de1̄)n

n = 0 ,

H−12̄ = −1

2
(de−)pqǫ

pq ,

[e−, e1]n̄ = −[e−, e2]pǫ
p
n̄ ,

H+12 = 0 ,

[e+, e1]n = [e+, e2]n = [e1, e2]n = 0 ,

(de+)pq = (de2)pq = (de1)pq = 0 ,

H−+2̄ =
1

2
(de1̄)pqǫ

pq − H2̄11̄ ,

[e−, e+]n̄ = [e1̄, e2]pǫ
p
n̄ − [e1, e1̄]n̄ ,

∂2̄Φ − 1

2
(de2̄)p

p − 1

4
(de1̄)pqǫ

pq = 0 ,

∂n̄Φ +
1

2
[e2, e2̄]n +

1

2
[e1̄, e2]pǫ

p
n̄ − 1

2
(θω)n̄ = 0 , (12.27)

The anti-self dual part of d̃ea, for a = −,+, 1 i.e. the (2,0)+(0,2) and hermitian trace, is

entirely expressed in terms of the structure constants of h. Therefore if h is abelian the

d̃e−, d̃e+, d̃e1 take values in su(2). The dilaton is invariant under four of the six parallel

vectors.

12.4.4 A(1 + e1234) = A(e15 + e2345) = A[i(1 − e1234) + e25 − e1345] = 0

The solution of the first two conditions can be found in (3.12). The third condition is new.

The solution of the dilatino Killing spinor equations expressed in SU(2) representations is

∂−Φ=∂+Φ=∂1Φ=∂2Φ = 0 ,

([e1, e2]m+[e1̄, e2]m)ǫm
n̄ = [e−, e+]n̄ + [e1, e1̄]n̄ ,

([e1, e2̄]p−[e1̄, e2]p)ǫ
p
n̄ =−[e1, e1̄]n̄ + [e2, e2̄]n̄ + 2i[e+, e2̄]n̄ ,

i([e−, e2]m̄−[e−, e1]pǫ
p
m̄) = 2[e1, e2]pǫ

p
m̄ ,

[e+, e1̄]m̄ − [e+, e2]nǫn
m̄ = [e−, e1]m̄ + [e−, e2]nǫn

m̄ = 0 ,

ǫmn(de+)mn = 2H+1̄2̄ , (de+)n
n = −H+11̄ − H+22̄ ,

ǫmn(de−)mn =−2H−12̄ , (de−)n
n = H−11̄ − H−22̄ ,

(de1̄)n
n =−H−+1̄ − H1̄22̄ + iH−12̄ − iH−1̄2 ,

(de1)mnǫmn =−iH−11̄ + iH−22̄ ,

(de1̄)mnǫmn = 2H−+2̄ + 2H2̄11̄ + iH−11̄ − iH−22̄ ,

ǫmn(de2)mn =−i(H−12̄ − H−1̄2) ,

(de2̄)n
n =−H−+2̄ − H2̄11̄ − iH−11̄ + iH−22̄ ,

ǫmn(de2̄)mn =−2H−+1̄ − 2H1̄22̄ + i(H−12̄ − H−1̄2) + 4iH+12 , (12.28)

0 = ∂n̄Φ+
1

2
[e2, e2̄]n̄+

1

2
[e1, e1̄]n̄+

1

2
[e−, e+]n̄−

1

2
(θωI

)n̄−[e1, e2]mǫm
n̄.

The anti-self dual part of d̃ea is entirely expressed in terms of the structure constants of

h. The dilaton is invariant under all parallel vector fields. Observe that if h is abelian,
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then the above conditions are the same as those that one can derive from the dilatino

Killing spinor equation of N = 8 backgrounds [28], see also (12.59). So the supersymmetry

enhances to15 N = 8.

12.5 N=4

12.5.1 Killing spinors

To begin, suppose that ǫ1 = 1 + e1234, ǫ2 = i(1 − e1234), ǫ3 = i(e12 + e34) and that K is

spanned by these three spinors. Then, Stab(K) = (Sp(1)L × Sp(1)R × Spin(1, 1)) ⋉ R4.

Writing P/K = R ⊕ H, the subgroup Sp(1)L × Sp(1)R acts only on H as y → ayb̄, where

a ∈ Sp(1)L and b ∈ Sp(1)R. In the basis (12.1), sp(1)L = R < i
2(Γ11̄ − Γ22̄),Γ12̄,Γ1̄2 >,

sp(1)R = R < i
2(Γ11̄ + Γ22̄ − Γ33̄ − Γ44̄),Γ1̄2̄ − Γ34,Γ12 − Γ3̄4̄ >, Spin(1, 1) is generated by

boosts along Γ+− and the Lie algebra of R4 is generated by R4 = R < Γ−1,Γ−1̄,Γ−2,Γ−2̄ >.

In addition if the subspace R of P/K is chosen along the i(e12 + e34) direction, H spans

the rest of the directions. Using a similar argument as in previous cases, it is easy to see

that Stab(K) has two types of orbits in P/K one has codimension zero in R and the other

has codimension zero in P/K. So the forth Killing spinor can be chosen either as

ǫ4 = e12 − e34 , (12.29)

or as

ǫ4 = e15 + e2345 . (12.30)

So the dilatino Killing spinor equation is either

A1 = Ae12 = 0 (12.31)

or

A1 = A(e12 + e34) = A(e15 + e2345) = 0 (12.32)

Next suppose that ǫ1 = 1 + e1234, ǫ2 = i(1 − e1234), ǫ3 = e15 + e2345 and that K is

spanned by these three spinors. It turns out that Stab(K) = (U(1)×U(1)×Spin(1, 1))⋉R2.

In the basis (12.1), u(1)⊕u(1) = R < i
4(Γ11̄−Γ22̄ +Γ33̄ +Γ44̄), i

2(Γ11̄ +Γ22̄) >, Spin(1, 1) is

generated by the boosts Γ+− and R2 is generated by Γ−1,Γ−6. Writing P/K = R2⊕R2⊕R,

where the former R2 is spanned by e12 − e34, i(e12 + e34), and the latter is spanned by

e25 − e1345, i(e25 + e1345) and R by the remaining direction. Each U(1) acts on a R2

with the two-dimensional representation. There are several types of orbits which can be

represented by

ǫ4 = i(e12 + e34) , (12.33)

ǫ4 = i(e15 − e2345) , (12.34)

ǫ4 = i(e12 + e34) + i(e15 − e2345) (12.35)

15Note that this case, together with the subsequent cases where requiring h to be abelian implies N = 8,

are exactly those which have StabΣ = 1.
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and

ǫ4 = cos ϕ(e25 − e1345) + i sin ϕ(e15 − e2345) (12.36)

Only the latter three choices give independent new cases. The dilatino Killing spinor

equations are

A1 = Ae15 = 0 , (12.37)

A1 = A(e15 + e2345) = A(e12 + e34 + (e15 − e2345)) = 0 , (12.38)

A1 = A(e15 + e2345) = A(cos ϕ(e25 − e1345) + i sin ϕ(e15 − e2345)) = 0 , (12.39)

Suppose that ǫ1 = 1 + e1234, ǫ2 = e15 + e2345, ǫ3 = i(1 − e1234) + e25 − e1345 and that

K is spanned by these three spinors. One can show that Stab(K) = SO(3) and acts on

P/K with the symmetric traceless product of the vector representation. In the basis (12.1),

so(3) = R < t1, t2, [t1, t2] >, where

t1 =
1

4

[

3Γ12̄ + 3Γ1̄2 − Γ1̄2̄ − Γ12 − Γ34 − Γ3̄4̄
]

+
1√
2
Γ−6

t2 =
i

4

[

2Γ11̄ + 4Γ22̄ − Γ33̄ − Γ44̄
]

− 1√
2
Γ+2 . (12.40)

From this one can easily show that the above generators satisfy the Lie algebra relations of

SO(3). To identify P/K with the traceless symmetric representation, S2
0(R3), first observe

that SU(2) has real representations of dimensions three, four and five, and all the rest are

of higher dimension. In the first two cases P/K would have been the sum of an irreducible

and trivial representations. This means that P/K would have a one-dimensional invariant

subspace under the SO(3) action. However, one can easily show that such a subspace does

not exit. Thus the only other option available is to identify P/K = S2
0(R3). A direct

computation in appendix C has confirmed this. There are two types of orbits of SO(3) in

S2
0(R3). One is a generic orbit of co-dimension two isomorphic to SO(3) and the other is a

special S2 orbit. This can be easily seen by observing that any 3 × 3 symmetric traceless

matrix can be diagonalized and has two eigenvalues. If the two eigenvalues are distinct,

then the symmetric matrix represent the generic orbit. If either one of the eigenvalues

vanishes or their sum vanishes, then the symmetric matrix represents the special S2 orbit.

A representative of the special orbit can be identified with a spinor that is invariant under

one of the generators of SO(3). Therefore, we can choose as a fourth Killing spinor either

ǫ4 = i cos ϕ(e15 − e2345) + i sin ϕ(e12 + e34) (12.41)

where ϕ is a constant angle, or

ǫ4 = i(e12 + e34) . (12.42)

Thus the dilatino Killing spinor equation is either

A(1 + e1234) = A(e15 + e2345) = A(i(1 − e1234) + e25 − e1345)

= A[cos ϕ(e15 − e2345) + sin ϕ(e12 + e34)] = 0 , (12.43)
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or

A(1 + e1234) = A(e15 + e2345) = A(i(1 − e1234) + e25 − e1345) = A(e12 + e34) = 0 . (12.44)

The latter case is a special case of the former for sin ϕ = 1.

12.5.2 A1 = Ae12 = 0

The solution of the dilatino Killing spinor equation expressed in SU(2) representations is

∂+Φ = 0 , H+αβ = H+α
α = 0 , [e+, eα]i = 0 , [eα, eβ ]i = [eα, eα]i = 0 ,

(de+)np = (de+)n
n = 0 ,

(deα)np = (deα)n̄p̄ = (deα)n
n = 0 ,

∂ᾱΦ − 1

2
Hᾱβ

β − 1

2
H−+ᾱ = 0 ,

∂n̄Φ − 1

2
θn̄ +

1

2
[e−, e+]n̄ = 0 , α = 1, 2 , n, p = 3, 4 , i = 3, 4, 3̄, 4̄. (12.45)

If h is not abelian, the dilaton is invariant under e+, d̃e−, d̃eα ∈ su(2) but d̃e− is not

restricted. For abelian h, the dilaton is invariant under e+, e1, e2.

12.5.3 A1 = A(e12 + e34) = A(e15 + e2345) = 0

The solution of the dilatino Killing spinor equation is

∂−Φ = ∂+Φ = ∂1Φ = (∂2 − ∂2̄)Φ = 0 ,

H+12 = H+11̄ + H+22̄ = 0 ,

[e1, e2]n = [e+, e1]n = [e+, e2]n = [e1, e1̄]n̄ + [e−, e+]n̄ − [e1̄, e2]pǫ
p
n̄ = 0 ,

[e1, e1̄]n̄+[e2, e2̄]n̄−[e1̄, e2̄]pǫ
p
n̄ =[e+, e2]n̄−[e+, e1̄]pǫ

p
n̄ =[e−, e1]n̄+[e−, e2]pǫ

p
n̄ = 0 ,

(de+)n
n = (de+)pq = 0 ,

H−11̄ − H−22̄ − (de−)n
n = 0 ,

H−12̄ +
1

2
(de−)pqǫ

pq = 0 ,

H211̄ + H+−2 +
1

2
ǫm̄n̄(de1)m̄n̄ = (de1)mn = (de1̄)n

n + H−+1̄ + H1̄22̄ = 0 ,

H+−1̄ − H1̄22̄ +
1

2
ǫm̄n̄(de2)m̄n̄ = H211̄ + H+−2 + (de2̄)p

p = (de2)mn = 0 ,

2∂2̄Φ + H+−2 + H+−2̄ + H211̄ − H2̄11̄ = 0 ,

2∂n̄Φ + [e1, e1̄]n̄ + [e2, e2̄]n̄ − [e+, e−]n̄ − (θω)n̄ = 0 . (12.46)

The dilaton is invariant under five parallel vector field. Moreover d̃e− ∈ su(2) and the

anti-self dual part of d̃e+, d̃e1 and d̃e2 are determined in terms of the structure constants

of h. So if h is abelian, all rotations are in su(2). In addition Φ is invariant under all

parallel vectors fields. As a consequence, there is supersymmetry enhancement to N = 8.
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12.5.4 A1 = Ae15 = 0

The solution in SU(2) representations is

∂+Φ = ∂−Φ = ∂1Φ = 0 , H−12̄ = H+12 = H−+2̄ + H2̄11̄ = 0 ,

(de+)np = 0 , (de+)n
n + H+22̄ + H+11̄ = 0 ,

(de−)np = 0 , H−11̄ − H−22̄ − (de−)n
n = 0 ,

(de1̄)np = (de1)np = 0 , (de1̄)n
n + H1̄22̄ + H−+1̄ = 0 ,

(de2)np = 0 , [e−, e+]n̄ + [e1, e1̄]n̄ = 0 ,

[e+, e2]n = [e+, e1]n = [e−, e2]n = [e−, e1̄]n = [e1̄, e2]n = [e1, e2]n = 0

∂2̄Φ − 1

2
(de2̄)n

n = 0 , ∂n̄Φ − 1

2
θn̄ +

1

2
[e2, e2̄]n̄ = 0 . (12.47)

The dilaton is invariant under e+, e− and e1. Moreover d̃ea ∈ u(2), a = −,+, 1, 2. For

the first three rotations, the hermitian trace depends on the structure constants of h.

Consequently even if h is abelian, the hermitian trace of d̃e2 does not vanish. There is no

supersymmetry enhancement to N = 8.

12.5.5 A1 = A(e15 + e2345) = A(e12 + e34 + (e15 − e2345)) = 0

The solution for the first three Killing spinor equations is given in (12.27). The forth Killing

spinor equation gives the additional constraints

(de+)m
m = −2H2̄11̄ − 2H−+2̄ = 2(de2̄)m

m ,

ǫm̄n̄(de2)m̄n̄ = 4H−1̄2 + 2H−+1̄ + 2H1̄22̄ ,

[e1̄, e2̄]pǫ
p
n̄ = [e1, e1̄]n̄ + [e2, e2̄]n̄ + 2[e−, e2̄]n̄ ,

[e+, e2]m̄ + ǫm̄
p[e+, e1̄]p = 2[e−, e+]n̄ + 2[e1, e1̄]n̄ . (12.48)

Note that these conditions together with (12.27) imply that ∂2Φ = 0. Therefore the dilaton

is invariant under all parallel vector fields. The anti-self dual part of d̃ea, for a = −,+, 1, 2

is entirely expressed in terms of the structure constants of h. Hence, if h is abelian then

d̃ea takes values in su(2) and supersymmetry enhances to N = 8.

12.5.6 A1 = A(e15 + e2345) = A(cos ϕ(e25 − e1345) + i sin ϕ(e15 − e2345)) = 0

The solution for the first three Killing spinor equations is given in (12.27) while the forth

implies the additional constraints

H−12̄ = H−1̄2 ,

cos ϕ(de−)n
n − i sin ϕ(H−12̄ + H−1̄2) = 0 ,

(de2̄)m
m + H2̄−+ + H2̄11̄ = 0 ,

cos ϕ

(

1

2
(de2̄)mnǫmn + H1̄−+ + H1̄22̄

)

− 2i sin ϕ(H−+2̄ + H2̄11̄) = 0 ,

cos ϕ([e2, e2̄]m̄ + [e−, e+]m̄ − [e1, e2̄]pǫ
p
m̄) − 2i sin ϕ([e−, e+]n − [e1, e1̄]n)ǫn

m̄ = 0 ,

cos ϕ(−[e−, e2]m̄ + [e−, e1]pǫ
p
m̄) − 2i sin ϕ[e−, e1]m̄ = 0 ,(12.49)
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where we have assumed that cos ϕ and sin ϕ do not vanish. In the special case in which

sin ϕ = 0, the fourth Killing spinor equation gives the additional constraints

H−12̄ = H−1̄2 , (de−)n
n = 0 ,

(de2̄)m
m + H2̄−+ + H2̄11̄ = 1

2(de2̄)mnǫmn + H1̄−+ + H1̄22̄ = 0 ,

[e2, e2̄]m̄ + [e−, e+]m̄ − [e1, e2̄]pǫ
p
m̄ = −[e−, e2]m̄ + [e−, e1]pǫ

p
m̄ = 0 . (12.50)

The additional constraints from the fourth Killing spinor equation imply both in the generic

and in the special case that ∂2Φ = 0. Therefore we conclude that in both cases the dilation

is invariant under all parallel vectors ea. The anti-self dual part of all rotations d̃ea depends

on the structure constants of h. Therefore if h is abelian, then d̃ea is self-dual, i.e. takes

values in su(2). In such a case, supersymmetry enhances to N = 8.

12.5.7 A(1+e1234) = A(e15 +e2345) = A(i(1−e1234)+e25−e1345) = A[cos ϕ(e15−e2345)+

sin ϕ(e12 + e34)] = 0

The solution for the first three Killing spinor equations has been given in (12.28). In

addition, the (generic) fourth Killing spinor equation, assuming both sin ϕ and cos ϕ do

not vanish, gives the additional constraints

H−12̄ − H−1̄2 = H+12 + H+1̄2̄ = 0 ,

H−+2 + H−+2̄ + H2̄11̄ − H211̄ + i(H−11̄ − H−22̄) = 0 ,

sinϕ(H+11̄ + H+22̄) − cos ϕ(H−+2̄ − H−+2 + H2̄11̄ + H211̄) = 0 ,

cos ϕ(H−12̄ + H−1̄2) + sinϕ(−H122̄ + H1̄22̄ + H−+1 + H−+1̄) = 0 ,

sin ϕ([e1̄, e2̄]m + [e1, e2]m − ǫm
n̄([e1, e1̄]n̄ + [e2, e2̄]n̄)) − 2 cos ϕ[e−, e1̄]m = 0 ,

sin ϕ([e+, e2]m̄ + ǫm̄
p[e+, e1̄]p) − 2 cos ϕ[e1̄, e2]pǫ

p
m̄ = 0 . (12.51)

Moreover for the special orbit that corresponds to sin ϕ = 1, we find that the solution to

fourth Killing spinor equations is

H+11̄ + H+22̄ = H+12 + H+1̄2̄ = 0 ,

H−+2 + H−+2̄ + H2̄11̄ − H211̄ + i(H−11̄ − H−22̄) = 0 ,

−H122̄ + H1̄22̄ + H−+1 + H−+1̄ − i(H−12̄ − H−1̄2) = 0 ,

[e1̄, e2̄]m + [e1, e2]m − ǫm
n̄([e1, e1̄]n̄ + [e2, e2̄]n̄) = 0 ,

[e+, e2]m̄ + ǫm̄
p[e+, e1̄]p = 0 . (12.52)

It is easy to see that the conditions in both cases restrict the commutators of the vectors

fields ea and the structure constants of h. As in the (12.28), the anti-self dual part of d̃ea

is entirely expressed in terms of the structure constants of h, and the dilaton is invariant

under all parallel vector fields. As a consequence, if h is abelian, supersymmetry enhances

to N = 8.

12.6 N=5

12.6.1 Killing spinors

In this case, it is more convenient to use the gauge symmetry to determine the normals

to the Killing spinors. The correspondence N ↔ 8 − N suggests that the normals can be
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chosen in a way similar to the Killing spinors for N = 3 backgrounds. In turn these can be

used to find the Killing spinors of the theory. In particular as for N = 3 supersymmetric

backgrounds, there are three cases to consider.

12.6.2 A1 = A(e15 + e2345) = Ae12 = 0

The solution of the Killing spinor equations is

∂+Φ = ∂−Φ = ∂1Φ = ∂2Φ = 0 ,

∂n̄Φ − 1

2
(θωI

)n̄ + 1
2 [e−, e+]n̄ = 0 ,

H+12 = H+11̄ + H+22̄ = H−+1̄ + H1̄22̄ = H−+2̄ + H2̄11̄ = 0 ,

[e+, e1]m = [e+, e2]m = [e+, e1]m̄ = [e+, e2]m̄ = [e−, e1]n̄ + [e−, e2]mǫm
n̄ = 0 ,

[e1, e2]m̄ = [e1, e1̄]m + [e2, e2̄]m = [e−, e+]m̄ + [e1, e1̄]m̄ − [e1̄, e2]pǫ
p
m̄ = 0 ,

(de+)mn = (de+)n
n = 0 ,

(de−)n
n − H−11̄ + H−22̄ =

1

2
ǫmn(de−)mn + H−12̄ = 0 ,

(de1)mn = (de1̄)mn = (de1)n
n = 0 ,

(de2)mn = (de2̄)mn = (de2)n
n = 0 .(12.53)

The dilaton is invariant under all parallel vector field ea. Moreover d̃ea, a = −,+, 1, is

self-dual, i.e. takes values in su(2), while d̃e2 takes values in u(2). The hermitian trace

of the latter depends on the structure constants of h. Therefore if h is abelian, there is

supersymmetry enhancement to N = 8.

12.6.3 A1 = A(e12 + e34) = Ae15 = 0

The solution to the Killing spinor equations is

∂+Φ = ∂−Φ = ∂1Φ = ∂2Φ = 0 ,

∂n̄Φ − 1

2
(θωI

)n̄ +
1

2
[e2, e2̄]n̄ = 0 ,

H+12 = H+11̄ + H+22̄ = H−12̄ = H−+2̄ + H2̄11̄ = 0 ,

[e+, e1]m = [e+, e2]m = [e+, e2]m̄ + ǫm̄
n[e+, e1̄]n = [e−, e1]n̄ = [e−, e2]m = 0 ,

[e1, e2]m =[e1̄, e2]m =[e1, e1̄]m̄ + [e2, e2̄]m̄+ǫm̄
p[e1̄, e2̄]p =[e−, e+]m̄+[e1, e1̄]m̄ = 0 ,

(de+)mn = (de+)n
n = 0 ,

(de−)n
n − H−11̄ + H−22̄ = (de−)mn = 0 ,

(de1)mn = (de1̄)mn = (de1̄)n
n + H−+1̄ + H1̄22̄ = 0 ,

(de2)mn =
1

2
(de2)m̄n̄ǫm̄n̄ − H−+1̄ − H1̄22̄ = (de2)n

n = 0 .(12.54)

The dilaton is invariant under all parallel vector field ea, and d̃e− is self-dual. Moreover

d̃ea, a = +, 1 takes values in u(2), where the hermitian trace depends on the structure

constants of h. Similarly all the anti-self-dual components d̃e2 depend on the structure

constants of h. Therefore if h is abelian, there is supersymmetry enhancement to N = 8.
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12.6.4 A1 = Ae15 = A(e25 − e1345 + i(e12 + e34)) = 0

The first four Killing spinor equations give the conditions (12.47), while the fifth implies

the additional constraints

(de−)n
n − (de+)n

n = (de1)n
n − (de1̄)n

n = (de2)n
n = 0 ,

1

2
(de2)m̄n̄ǫm̄n̄ + (de1)n

n − i(de−)n
n = 0 ,

−[e−, e2̄]m + [e−, e1̄]p̄ǫ
p̄
m − i([e1̄, e2̄]m − ǫm

n̄([e1, e1̄]n̄ + [e2, e2̄]n̄) = 0 ,

−[e+, e1]m̄ + ǫm̄
p[e+, e2̄]p + i(−[e1, e1̄]n̄ + [e2, e2̄]n̄ − [e1, e2̄]pǫ

p
m̄) = 0 . (12.55)

Note that the above conditions together with those in (12.47) imply that ∂2Φ = 0. There-

fore the dilaton is invariant under all parallel vector fields ea. Moreover d̃ea, a = −,+, 1,

take values in u(2), and the hermitian traces depend on the structure constants of h. Sim-

ilarly the anti-self dual part of d̃e2 depends on the structure constants of h. So again there

is supersymmetry enhancement to N = 8, if h is abelian.

12.7 N=6

12.7.1 Killing spinors

As in the N = 5 case, we use the gauge symmetry to determine the normals to the

Killing spinors. Comparing with the N = 2 case, we conclude that there are two different

possibilities.

12.7.2 A1 = Ae15 = Ae12 = 0

The solution of the dilatino Killing spinor equation is

∂−Φ = ∂+Φ = ∂1Φ = ∂2Φ = 0 ,

H+−1̄ − H1̄22̄ = H+−2̄ − H2̄11̄ = H+11̄ + H+22̄ = H+12 = H−12̄ = 0 ,

[e1, e2]m̄ =[e1, e2]m =[e1, e2̄]m̄ =[e+, e−]n̄−[e1, e1̄]m̄ =[e1, e1̄]m̄+[e2, e2̄]m̄ = 0 ,

[e+, e1]m = [e+, e2]m = [e+, e1]m̄ = [e+, e2]m̄ = 0 ,

[e−, e1]m̄ = [e−, e2]m = 0 ,

(de+)n
n = (de+)mn = (de−)n

n − H−11̄ + H−22̄ = (de−)mn = 0 ,

(de1)n
n = (de1)mn = (de1)m̄n̄ = 0 ,

(de2)n
n = (de2)mn = (de2)m̄n̄ = 0 ,

∂n̄Φ − 1

2
(θωI

)n̄ + [e−, e+]n̄ = 0 . (12.56)

Clearly the dilaton is invariant under all parallel vectors ea. Moreover d̃ea, a = −, 1, 2

take values in su(2), while d̃e+ takes values in u(2). The hermitian trace of the latter is

determined by the structure constant of h. So there is supersymmetry enhancement to

N = 8, if h is abelian.
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12.7.3 A1 = Ae15 = A(e25 − e1345) = A(e12 + e34) = 0

The solution of this Killing spinor equation is given in (12.54) and supplemented with the

conditions

(de−)n
n = (de1)n

n − (de1̄)n
n = 0 ,

−[e−, e2̄]m + [e−, e1̄]p̄ǫ
p̄
m = −[e1, e1̄]n̄ + [e2, e2̄]n̄ − [e1, e2̄]pǫ

p
m̄ = 0 . (12.57)

The dilaton is invariant under all parallel vector fields ea. Moreover d̃ea, a = −,+, take

values in su(2), and d̃e1 takes values in u(2) with the hermitian trace to depend on the

structure constants of h. Similarly the anti-self dual part of d̃e2 depends on the structure

constants of h. So again there is supersymmetry enhancement to N = 8, if h is abelian.

12.8 N=7

12.8.1 A1 = Ae15 = Ae12 = A(e25 − e1345) = 0

The solution is given by (12.56) with the additional constraints

(de−)m
m = 0 , [e−, e2]m̄ − [e−, e1]pǫ

p
m̄ = [e−, e+]m̄ − 1

2 [e1, e2̄]pǫ
p
m̄ = 0 , (12.58)

It is straightforward to see that the difference between the solution of the dilatino Killing

spinor equation for N = 7 backgrounds and that of N = 8 backgrounds, see [28] and (12.59)

below, is that in the former case the commutators [e−, e2]i and [e−, e+]i do not vanish.

Therefore if [h, h] ⊆ h, then the N = 7 backgrounds admit eight supersymmetries. We will

discuss the case [h, h] 6⊆ h in section 12.10.

12.9 Comparison with N=8

The solutions to the dilatino Killing spinor equation are [28]

∂aΦ = 0 , (dea)n
n = 0 , (dea)mn = 0 ,

[ea, eb]i = 0 , Ha1a2a3
+

1

3!
ǫa1a2a3

b1b2b3Hb1b2b3 = 0 ,

2∂n̄Φ − (θωI
)n̄ = 0 , (12.59)

where ǫ+−11̄22̄ = −1. In particular h = R < ea >, [h, h] ⊆ h and spans a self-dual Lorentzian

Lie algebra. As has been already mentioned, these have been classified in [45].

It is clear that the differences between N = 8 and 1 ≤ N < 8 supersymmetric back-

grounds lie in the invariance properties of the dilaton under the action of the parallel

vector field, the properties of the commutator [h, h] and the values of the rotations d̃ea

in su(2)⊥ ⊂ Λ2(R4). All the different cases can be characterized in terms of these three

criteria. However unlike the cases with parallel spinors that admit a non-compact isotropy

group, the comparison is much more involved. In the case by case analysis we have pre-

sented, we have not used the fact that there is a classification of Lorentzian metric Lie

groups. In particular, this may impose some additional conditions on the structure con-

stants of h that arise from the Jacobi identities. In turn, this may lead to some additional

simplifications to the solutions of the dilatino Killing spinor equations. We shall investigate

this aspect elsewhere.
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12.10 Reduction of holonomy

As in the investigation of the holonomy reduction in previous cases, we assume that dH = 0,

hol(∇̂) ⊆ SU(2) and use the field equations to identify the additional ∇̂-parallel forms. As

before either [h, h] ⊆ h or hol(∇̂) ⊂ SU(2). Similarly, one can show that the Habc are

constant and they can be identified with the structure constants of h.

In fact, in this case the constraints that arise from [h, h] 6⊆ h are particularly strong.

Suppose there is some component Habi = −[Xa,Xb]i non-vanishing. Since it is parallel

with respect to ∇̂ the supercurvature has to satisfy the integrability condition

R̂AB,i
jHabj = 0 , (12.60)

One can show that this implies the vanishing of R̂ in the following way. First suppose that

either Hab3 or Hab4 vanishes. Then the above constraint readily implies the vanishing of

the supercurvature. If both components of Habi are non-vanishing, one can show that the

supercurvature has to satisfy

−R̂AB,34̄R̂AB,3̄4 = −R̂AB,33̄R̂AB,4̄4 . (12.61)

The left hand side is non-positive while the right hand side is non-negative (using the fact

that R̂ takes values in SU(2)) and hence the supercurvature has to vanish. We conclude

that in the SU(2) case either [h, h] ⊆ h or hol(∇̂) = 1.

Furthermore,

τ1 = iHap
p ea (12.62)

is ∇̂-parallel. Since ea are also ∇̂-parallel iHap
p = ua are constants. Similarly one can

show that

τa
2 =

1

2
Ha

pqe
p ∧ eq , (12.63)

are also ∇̂-parallel. In this case, one can set

τa
2 = λa ω2,0

J , λa ∈ C . (12.64)

Using similar arguments to those we have made for the G2 case, one can also show

that

τ3 = ∂aΦ ea (12.65)

and

τ4 = (2∂iΦ − (θωI
)i) ei (12.66)

are ∇̂-parallel. Since ea are also ∇̂-parallel, ∂aΦ = va are constants. Similarly, either

τ4 = 0 or hol(∇̂) ⊂ SU(2).

Let us now turn to investigate some of the implications that the above parallel forms

have for supersymmetric backgrounds. As can be seen from the conditions for N = 8
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backgrounds, dH = 0, hol(∇̂) = SU(2) and the field equations are not sufficient to imply

the dilatino Killing spinor equations from the gravitino ones. In particular, one has to

impose in addition τ1 = τ2 = τ3 = 0. Moreover, a direct inspection of the conditions for

the descendants with N < 7 reveals that they may be solutions with hol(∇̂) = SU(2). All

such solutions are principal bundles over a four-dimensional manifold. However the base

manifold may not admit an SU(2)-structure.

For N = 7 we found that if [h, h] ⊆ h this would reduce to the N = 8 case. However,

due to the above integrability condition (12.60), if [h, h] 6⊆ h the holonomy of ∇̂ reduces to

the identity. As mentioned before and as will be discussed in section 13, such backgrounds

preserve at least 8 supersymmetries. This arises as a consequence of the conditions dH =

R̂ = 0 and the dilatino Killing spinor equation [32, 31]. This case is reminiscent of type II

backgrounds with 31 supersymmetries [34 – 36].

13. The descendants of 1

The Killing spinor equation implies that R̂ = 0 and so the spacetime is parallelizable. In

addition one can argue that dH = 0. This is certainly the case in the lowest order in α′.

The Bianchi identity of H receives anomaly contributions from the gravitational sector and

the gauge sector. The gravitational contribution can be expressed in terms of Ř where Ř

can be found from R̂ after setting H to −H. Now if dH = 0, R̂AB,CD = ŘCD,AB and

since R̂ = 0 for these backgrounds, the gravitational contribution to the anomaly vanishes.

The gauge contribution also vanishes if we assume that all parallel spinors also solve the

gaugino Killing spinor equation. Parallelizable supersymmetric backgrounds with dH 6= 0

have been investigated in [31].

The dilatino Killing spinor equation imposes additional conditions on the spacetime.

There are two cases to consider depending on whether or not the one-form dΦ is null.

Suppose that dΦ is not null and |dΦ|2 6= 0. In this case, one can show that the dilatino

Killing spinor equation [32, 31] implies that

Π =
1

2
+

∂MΦHNPQΓMNPQ

24|dΦ|2 , (13.1)

is a projector, Π2 = Π. Since tr Π = 8, backgrounds with dH = R̂ = 0 and |dΦ| 6= 0

preserve at least half of the supersymmetry. Moreover one can also show that dΦ is ∇-

parallel, spacelike and idΦH = 0, see e.g [32, 28]. All these are linear dilaton backgrounds.

Moreover dΦ spans a flat direction orthogonal to the rest of spacetime.

On the other hand if |dΦ| = 0, i.e. either dΦ is null or dΦ = 0, then H is null. If

dΦ 6= 0, then using the condition idΦH = 0 one can show that these backgrounds preserve

at least eight supersymmetries. In the following we confirm the results of [31].

13.1 N=8

The solutions for which |dΦ| 6= 0 have been classified and have been found to be isometric
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to

AdS3 × S3 × S3 × R , AdS3 × S3 × R4 , R1,1 × SU(3) , R3,1 × S3 × S3 ,

R6,1 × S3 , CW4 × S3 × R3 , CW6 × S3 × R , (13.2)

where CW stands for Cahen-Wallach spaces. In fact it turns out that the full content of the

dilatino Killing spinor equation is the projection Πǫ = ǫ. So these backgrounds preserve

precisely 8 supersymmetries.

On the other hand if |dΦ| = 0, dΦ 6= 0, it has been shown that the spacetime is

isometric to

CW10 , CW8 × R2 , CW6 × R4 , CW4 × R6 , R9,1 . (13.3)

The eight Killing spinors can be chosen, up to a gauge transformation, to satisfy Γ+ǫ = 0.

A basis in the space of these Killing spinors is (eα5, eαβγ5), i.e. these Killing spinors span the

∆−
8

representation of Spin(8). All these backgrounds can be thought of as degenerations

of CW10. The only non-vanishing component of the flux is

H = e+ ∧ β , β =
1

2
βije

i ∧ ej , (13.4)

and the dilaton is linear. The form β is a generic element in Λ2(R8) = spin(8). The

Maurer-Cartan structure equations of the Cahen-Wallach group manifolds are

de+ = 0 , de− =
1

2
βije

i ∧ ej , dei = −βi
je

+ ∧ ej . (13.5)

The backgrounds with N > 8 supersymmetries are special cases of such backgrounds with

constant dilaton and appropriate restrictions on β.

13.2 N= 10

To begin observe that Σ(K) = Spin(1, 1) × Spin(8). The additional Killing spinor lies in

∆+
8
. Using a similar argument to that we have applied to determine the descendants in

the R8 case, the Killing spinor can be chosen as

ǫ9 = 1 + e1234 . (13.6)

The dilatino Killing spinor equation gives

∂+Φ = 0, H+α
α = 0, H+αβ − 1

2ǫαβ
γ̄δ̄H+γ̄δ̄ = 0 . , (13.7)

Therefore for such backgrounds, we have found that

Φ = const , β ∈ spin(7) . (13.8)

Since β is constant and Spin(7) acts on the remaining spinors with the vector representation,

the dilatino Killing spinor equation βijΓ
ijǫ = 0 has another solution. This is because an

element of SO(2k + 1) acting of R2k+1 leaves an axis invariant. The stability subgroup in
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this case is SU(4) = Spin(6). Therefore, there is supersymmetry enhancement to N = 10.

The second spinor can be chosen as

ǫ10 = i(1 − e1234) (13.9)

and β ∈ su(4). These backgrounds are the special cases of Cahen-Wallach space-times that

have two additional supersymmetries [31]. Therefore there are no isolated backgrounds

with N = 9 supersymmetry. However deformations families of N = 10 backgrounds which

can be constructed by allowing β to take values in spin(7) have N = 9 supersymmetries.

13.3 N=12

Applying the same arguments as in the R8 case, we can choose an additional solution of the

dilatino Killing spinor equation βijΓ
ijǫ = 0 as ǫ11 = i(e12 + e34). The stability subgroup is

Sp(2) = Spin(5). Again Sp(2) acts with the vector representation on the remaining spinors

and so there is an additional Killing spinor which can be chosen as ǫ12 = e12 − e34 with

stability subgroup Spin(4) and so

β ∈ spin(4) = su(2) ⊕ su(2) . (13.10)

Again there are no backgrounds with N = 11 supersymmetries. Moreover the components

of β for N > 8 are those of H+ij found for the corresponding descendants of the R8.

13.4 N=14

It can be arranged such that the next solution of the dilatino Killing spinor equation is

ǫ13 = e13 + e24 with stability subgroup Spin(3) which again acts on the remaining three

spinors with the vector representation. Therefore there is an addition Killing spinor which

can be chosen ǫ14 = i(e13 − e24). Moreover

β ∈ su(2) . (13.11)

13.5 N=16

There no backgrounds with N = 15 supersymmetries, see e.g [35]. The backgrounds with

N = 16 supersymmetries are isometric to Minkowski spacetime [37].

14. Concluding remarks

We have solved, using the spinorial geometry technique of [29], the Killing spinor equations

for all supersymmetric type I backgrounds. In particular, we utilized the gauge symmetry

of the Killing spinor equations of the theory to construct representatives for the Killing

spinors in all cases. We have approached the problem by first solving the gravitino Killing

spinor equation whose solutions are parallel spinors with respect to a metric connection,

∇̂, with torsion a three-form H. The solutions have been characterized by the isotropy

group of the spinors in Spin(9, 1). Then in each case, we have used as gauge symmetry the

subgroup Σ(P) of Spin(9, 1) that leaves invariant the space of parallel spinors P to find
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representatives for the solutions of the dilatino Killing spinor equation for the descendant

backgrounds. The Killing spinors are characterized by the isotropy group of the associated

parallel spinors and their stability subgroup in Σ(P).

There are two classes of supersymmetric backgrounds depending on whether the isotropy

group of the parallel spinors is compact K or non-compact K ⋉ R8. In the latter case,

all backgrounds admit a null ∇̂-parallel vector field. Moreover, their geometries can be

characterized in terms of the properties of the rotation of the parallel vector field and those

of endomorphisms of the tangent bundle that behave as almost complex structures on the

transverse directions to the light-cone. In particular, the geometries depend on the inte-

grability of these endomorphisms and on a relation between their Lee forms. In addition

the Gray-Hervella class W2 vanishes for all the endomorphisms. We have also shown that

if one imposes dH = 0 and the field equations, then the holonomy of ∇̂ reduces for all

the descendant backgrounds. This is because the spacetime admits more parallel forms

than those allowed by the holonomy of ∇̂. Moreover, under the same assumptions, if one

insists that the holonomy of ∇̂ is precisely the isotropy group of the parallel spinors, then

the gravitino Killing spinor equation implies the dilatino one and all parallel spinors are

Killing. These are the backgrounds explored in [28].

On the other hand if the isotropy group of the parallel spinors is compact, i.e. G2,

SU(3), SU(2) and {1}, then the spacetime admits, 3, 4, 6 and 10 ∇̂-parallel vector fields,

respectively. In addition all the invariant forms associated with these groups are also

∇̂-parallel. The geometry of the backgrounds depends on the properties of the rotation

of the parallel vector fields and their commutators, the integrability conditions of the

endomorphisms invariant under the above groups, and the relation between the Lee forms

of the remaining ∇̂-parallel forms. In addition W2 = 0 vanishes for all endomorphisms

associated with the invariant Hermitian forms. The pattern of relations between the various

tensors that characterize the geometry is more involved in this case. We have also shown

that if dH = 0 and the field equations are satisfied, then in many cases there are additional

parallel forms on the spacetime than those allowed by the holonomy groups. Therefore

if these additional forms do not vanish, the holonomy reduces. Hence, if one insists that

the holonomy of ∇̂ is precisely the isotropy group of the parallel spinors, this imposes

additional conditions on the existence of descendants. In particular, this would imply that

the vector space spanned by ∇̂-parallel vector fields closes under Lie brackets and many

terms in the solution of dilatino Killing spinor equation for the descendants would vanish.

However unlike the non-compact case, there are descendants with holonomy precisely the

isotropy group of the parallel spinors.

As we have already mentioned, the assumption that the holonomy of ∇̂ is precisely

the isotropy group of the parallel spinors puts strong conditions on the existence of most

descendants. However, one may allow the holonomy of ∇̂ to be reduced. In some of the

cases, this will imply enhancement of supersymmetry but not always. We have shown that

the N = 7 descendant of SU(2) always admits an additional supersymmetry and so it can

be identified with the N = 8 backgrounds. The full pattern or web of reductions is rather

involved and it may be worth a systematic investigation. There are additional conditions

on the geometry that we have not investigated. For example, there is a classification of
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Lorentzian Lie groups [33] and so a priori there are additional conditions on the structure

constants of the Lie algebra of the parallel vectors. These have not been implemented in

the analysis of the descendants. This mostly affects the descendants of the SU(2) case and

the results will be reported elsewhere [46].

So far we have investigated the geometry of supersymmetric backgrounds. A natural

question arises whether all solutions can be classified. If a background admits Killing

spinors with a non-compact isotropy group, then from the results of [28], dH = 0, the

Killing spinor equations, and the vanishing of E−− and LH−+ components of the Einstein

and two-form gauge potential field equations, respectively, imply that all field equations are

satisfied. Similarly, if a background admits Killing spinors with a compact isotropy group,

then the Killing spinor equations and dH = 0 imply all field equations. However despite

these simplifications, it is unlikely that all the solutions can be classified in full generality

in the near future. This is because such a task is related to other classic classification

problems like for example those of G2 and Spin(7) manifolds that remain unresolved.

Nevertheless some classes of solutions can be understood better. One such class is that of

compactifications of type I supergravities with fluxes. It is clear that some backgrounds

with N , N = 1, 2, 3, 4, 5, 6, 8, parallel spinors which have a non-compact isotropy group

can serve as the vacuum configurations of compactification of type I to 1 + 1 dimensions.

This is confirmed by the property of Σ(P) to be isomorphic to Spin(1, 1)×R where R and

be thought of as an R-symmetry group of the 1 + 1 supergravity. A similar observation

can be made for backgrounds with parallel spinors which have compact isotropy groups.

In particular backgrounds with parallel spinors that have G2, SU(3) and SU(2) isotropy

groups can be used for compactifications to 2 + 1-, 3 + 1- and 5 + 1-dimensions. The

Σ(P) group has the appropriate structure. It is also possible to go beyond the vacuum

configurations and compare supersymmetric solutions of type I supergravity with those of

lower dimensional supergravities that are related via a compactification. This will give an

insight into how supersymmetric solutions are related in a compactification scenario.

One may also wonder whether the classification of geometries of all supersymmetric

backgrounds in type I supergravity can be extended to those of type II supergravities.

The nature of the problem in type II is different. This is because the gauge group of the

Killing spinor equations in type II supergravities is a proper subgroup of the holonomy

group of the supercovariant connection. This, and its consequences, have been explained

in detail in the conclusions of [44] and we shall not repeat the analysis here. Nevertheless

the results of this paper can be adapted to solve the algebraic Killing spinor equations

of type II supergravities provided that a solution of the gravitino Killing spinor equation

is known. In particular the group Σ(P) that preserves the space of parallel spinors can

again be introduced and then it can be used to find representatives for the solutions of

the algebraic Killing spinor equations. Clearly, this can be applied in type IIA and IIB

supergravities and well as in other supergravities in lower dimensions.
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A. Geometric structures

A.1 Compact stability subgroup

To determine the geometry of supersymmetric backgrounds, one has to understand the

different geometric structures that can occur. For parallel spinors with compact stability

subgroups K in Spin(9, 1), and so hol(∇̂) ⊆ K, the spacetime admits one time-like and

n = 2 or 3 or 5 or 9 spacelike ∇̂-parallel vectors fields denoted by Xa and some K-invariant

∇̂-parallel forms, which we denote collectively by τ . It is always possible to choose a basis

in the ring of invariant forms such that

iaτ = 0 , (A.1)

where ia denotes inner derivation with respect to the vector field Xa. Since Xa are parallel

they are nowhere zero and so span a topologically trivial subbundle Ξ of the tangent vector

bundle TM of the spacetime M . Thus we have

0 → Ξ → TM → Π → 0 , (A.2)

such that Π is the orthogonal complement of Ξ in TM with respect to the spacetime

metric, TM = Ξ ⊕ Π. Since Ξ is trivial, the topological structure group of M reduces to

K ⊂ Spin(9 − n) ⊂ Spin(9, 1). In general [Ξ,Ξ] * Ξ, and so M is not always foliated.

Nevertheless, the above decomposition of TM and its dual can be used to decompose the

various tensors of M along the directions of Ξ and Π. In particular, introduce the dual

one forms ea of Xb, i.e. ea(Xb) = δa
b. Since ∇̂ is a metric connection g(Xa,Xb) is constant

and so one can always choose g(Xa,Xb) = ηab, where ηab is the standard Lorentz metric.

Therefore, we can set for the metric and H,

ds2 = ηabe
aeb + δije

iej , (A.3)

H =
1

3!
Habce

a ∧ eb ∧ ec +
1

2
Habie

a ∧ eb ∧ ei +
1

2
Haije

a ∧ ei ∧ ej +
1

3!
Hijke

i ∧ ej ∧ ek ,

where ei is a local basis of one-forms spanning the fibers of the dual of Π, i.e. the spacetime

frame index decomposes as A = (a, i) and H|Π = 1
3!Hijke

i ∧ ej ∧ ek. In this basis, the

remaining ∇̂-parallel forms can be written as

τ =
1

k!
τi1,...,ikei1 ∧ · · · ∧ eik , (A.4)

i.e. τ = τ |Π. This follows from (A.1).

To find the conditions imposed on the geometry by ∇̂Xa = ∇̂τ = 0, we observe that

∇̂A(Xa)B = 0 ⇐⇒ iaH = ηabdeb , Lag = 0 ,

∇̂AτB1...Bk
= 0 ⇐⇒ ∇aτj1...jk

=
k

2
(−1)kHa

i
[j1τj2...jk]i , ∇̂iτj1...jk

= 0 . (A.5)
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Therefore Xa is Killing and its rotation is given in terms of H. In turn this implies that

all components of H of the type HaAB are determined. In particular, we have that

Haij = (iaH)ij = (dea)ij , Habi = (ibiaH)i = (dea)bi = −[Xa,Xb]i ,

Habc = icibiaH = (dea)bc = −g([Xa,Xb],Xc) , (A.6)

where dea = ηab(deb). If [Ξ,Ξ] ⊆ Ξ, i.e. Xa span a Lie algebra, then Habi = 0. We shall

examine this case in more detail later.

Next focus on the conditions in (A.5) involving τ . It is clear from the above equations

that some of the components Haij are also determined in terms the the covariant derivative

of τ . Compatibility requires a restriction on the geometry, i.e. a relation between the

exterior derivative of Xa, which also determines Haij, and the covariant derivative of τ .

To find such geometric conditions, we begin with the first pair of the above equations,

and decompose Λ2(R9−n) = k ⊕ k⊥, where k is the Lie algebra of K. This induces a

decomposition of the two-form iaH|Π as iaH|Π = iaH
k + iaH

k⊥ . It is clear that iaH
k is

not determined by the first equation because the forms τ are invariant under the action of

K. However, iaH
k⊥ can be expressed in terms of both the covariant derivative of τ and

the rotation of Xa. As a result, the k⊥ component of the rotation of Xa can be expressed

in terms of the ∇a covariant derivative of τ , i.e schematically we have

(dea)
k⊥ = (∇aτ)k

⊥

. (A.7)

It remains to investigate the condition ∇̂iτj1...jk
= 0. This condition can be used to

investigate the H|Π component of H. The analysis is similar to that which one does in the

context of (9 − n)-dimensional manifolds with K-structure compatible with a connection

with skew-symmetric torsion. The end results depends on the K structure, it may or may

not give additional conditions on the geometry. In all cases, H|Π is entirely determined

in terms of the geometry. We shall not give further details here but we describe the end

result in each case separately.

Using ∇̂Xa = ∇̂τ = 0, one can also compute the Lie derivative of τ along Xa to find

LaτA1A2...Ak
= k(−1)kHa

B
[A1

τA2...Ak]B ⇐⇒ Laτi1i2...ik = k(−1)kHa
j
[i1τi2...ik]j ,

Laτbi1...ik−1
= (−1)kHa

j
bτi1...ik−1j . (A.8)

Thus if iaH
k⊥ vanishes and [Ξ,Ξ] ⊆ Ξ, then Laτ = 0. Moreover observe that if dH = 0,

then LaH = 0.

One can utilize the relation of H to the rotation of Xa to write H in terms of Xa in

various ways. For example, one can write

H = ηab ea ∧ deb +
1

3
g([Xa,Xb],Xc)e

a ∧ eb ∧ ec +
1

2
[Xa,Xb]ie

a ∧ eb ∧ ei

+
1

3!
Hijke

i ∧ ej ∧ ek , (A.9)

where as we have mentioned the expression for H|Π depends on the K-structure.

As has been observed in [28], there is an alternative way to write H in the case that

[Ξ,Ξ] ⊆ Ξ. In particular, one has that Habi = 0, the spacetime is a principal bundle, λa = ea
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is identified with a principal bundle connection, and Habc are the structure constants of

the Lie algebra spanned by Xa. In this case, it is more convenient to write

H =
1

3
ηabλ

a ∧ dλb +
2

3
ηabλ

a ∧ Fb +
1

3!
Hijke

i ∧ ej ∧ ek , (A.10)

where

F =
1

2
Ha

ije
i ∧ ej = dλa − 1

2
Ha

bcλ
b ∧ λc , (A.11)

is the curvature of the principal bundle. Sometimes we write Hrest = H|Π.

The dilatino Killing spinor equation will impose additional conditions on H and on

the geometry. These are determined on a case by case basis from the solutions of the

dilatino Killing spinor equations and depend on the choice of Killing spinors up to Lorentz

transformations. This is unlike the conditions we have described above which depend on

the ∇̂-parallel spinors that the spacetime admits, i.e. the solutions of the gravitino Killing

spinor equation.

A.2 Non-compact stability subgroup

If the stability subgroup of the parallel spinors is not compact, K ⋉ R8, the spacetime

admits a ∇̂-parallel null vector field X and null ∇̂-parallel forms which we collectively

denote with τ such that

iXτ = 0 . (A.12)

Since the null vector field is nowhere vanishing, the tangent bundle of the spacetime admits

a trivial rank one subbundle Ξ and so

0 → Ξ → TM → L → 0 . (A.13)

Choosing X = e+, and so the associated ∇̂-parallel one-form is e−, the spacetime metric

can be written as

ds2 = 2e−e+ + δije
iej , (A.14)

where e+, ei is a local basis in L. The structure group of TM , which is a subgroup of the

holonomy group K ⋉ R8 ⊂ Spin(8) ⋉ R8, acts as

e− → e− , e+ → e+ − Oijq
i ej − Oijq

iqj e− , ei → Oi
j ej + qi e− , (A.15)

where O is an element of the vector representation of Spin(8) and q ∈ R8. There is no

natural definition of the e+ light-cone direction or of the “transverse” ei directions to the

lightcone. Next observe the bundle of (k + 1)-forms of M , Λk+1(M), contains a subbundle

Nk+1 = {α ∈ Λk+1(M) , s.t., iXα = 0 , e− ∧ α = 0} . (A.16)

The ∇̂-parallel forms τ are sections of this bundle. The transition functions of Nk+1 are

those associated with the k-fold skew-symmetric product of the vector representation of
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SO(8), i.e. the transition functions of Nk+1 are those of a k-form bundle of a “transverse

space” to the light-cone. In particular, one can define “transverse” (k + 1)-forms on the

spacetime M up to sections of Nk+1. This can be seen from the sequence

0 → Nk+1 → Mk+1 → Ωk+1 → 0 (A.17)

where

Mk+1 = {α ∈ Λk+1(M) , s.t., iXα = 0 } , (A.18)

and the “transverse forms” are sections of Ωk+1. Moreover observe that the map e−∧ :

Ωk → Nk+1 is an isomorphism. In addition Ωk+1 is equipped with a fiber metric induced

from the spacetime metric.

The ∇̂-parallel forms τ can be written as τ = e− ∧ φ, where φ are K-invariant forms

which can be thought of as sections of Ωk. The condition that X and τ are ∇̂-parallel can

be written as

∇̂AXB = 0 ⇐⇒ de− = iXH , LXg = 0

∇̂AτB1...Bk+1
= 0 ⇐⇒ ∇+φj1...jk

=
k

2
(−1)kH+

i
[j1φj2...jk]i ,

∇̂−φj1...jk
= ∇−φj1...jk

+ (−1)k
k

2
H i

−[j1φj2...jk]i = 0

∇̂iφj1...jk
= 0 , (A.19)

So the iXHAB = H+AB components of H are determined in terms of e−, and X is a Killing

vector field. Next let us focus on

∇+φj1...jk
=

k

2
(−1)kH+

i
[j1φj2...jk]i . (A.20)

This can be viewed as conditions on H+ij. Since iX iXH = 0, iXH is a section of M2.

The above condition imposes a restriction on the “transverse” components of iXH. In

particular, decomposing Λ2(R8) = k ⊕ k⊥, (A.20) is independent of iXHk, and expresses

iXHk⊥ in terms of the covariant derivative of τ along the X direction. In turn this is

related to the k⊥ component of the rotation de−. This is a condition on the geometry as

that of (A.7) for compact stability subgroups mentioned above. Similarly, one can see from

the remaining conditions in (A.19) that the Hk
− is not determined by the parallel transport

equation while the Hk⊥

− is expressed in terms of the ∇− covariant derivative of τ .

It remains to investigate the condition ∇̂iφj1...jk
= 0. This condition can be analyzed as

though it is examined in the context of 8-dimensional manifolds with K-structure compat-

ible with a connection with skew-symmetric torsion. This is because as we have mentioned

Ωk has the properties of the bundle of k-forms of “transverse space” to the light-cone. The

end result depends on the K structure, it may or may not give additional conditions on

the geometry. In all cases, Hijk is entirely determined in terms of the geometry.

The Lorentzian structures we have presented above are reminiscent of the Cauchy-

Riemann (CR) structures. This is not a surprise since the CR structures also arise in

the context of null Maxwell fields in General Relativity, and they can be associated with
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a U(n) ⋉ R2n type of structures, for a recent review see [43]. One can give various gen-

eralizations of the CR structures by using a Gray-Hervella type of classification for the

K ⋉ RL-structures.

The Lie derivative of a k-form along the ∇̂-parallel vector field X is

LXτA1A2...Ak+1
= (k + 1)(−1)k+1iXHB

[A1
τA2...Ak+1]B

⇐⇒ LXτ−i1...ik = kiXHj
[i1τi2...ik]j− . (A.21)

Thus LXτ = 0 for all τ , iff iXHk⊥ = 0.

The geometry and fluxes can be written as

ds2 = 2e−e+ + δije
iej

H = e+ ∧ de− +
1

2
(Hk + Hk⊥)−ije

− ∧ ei ∧ ej +
1

3!
Hijke

i ∧ ej ∧ ek (A.22)

where Hk
− is not determined by the Killing spinor equations.

For pp-wave backgrounds de− = 0. In such a case, one can write e− = dv for some

coordinate v and X is parallel with respect to the Levi-Civita connection. The transverse

space B to the pp-wave can then be defined as u, v = const., where u is the affine parameter

of the of the null geodesics. In all cases B admits a K-structure, see [28] for more details.

A.3 Integrability conditions, field equations and holonomy

To investigate the existence of certain supersymmetric backgrounds, it is useful to incor-

porate the Bianchi identities and the field equations in the conditions for supersymmetry.

The derivation of the field equations from the integrability conditions of the Killing spinor

equations can be found in [41, 28]. Some additional useful formulae are the Bianchi iden-

tities

R̂[AB,CD] = −1

4
(dH)ABCD +

1

2
HE[ABHE

CD] ,

R̂A[B,CD] = −1

3
∇̂AHBCD − 1

6
(dH)ABCD ,

R̂[AB,C]D = −1

3
dHABCD − 1

3
∇̂DHABC − HE

D[AHBC]E . (A.23)

of R̂. In particular, the second identity will be used to investigate the reduction of the

holonomy of ∇̂ for the descendants.

B. Revisiting the singlets

In the introduction, we have listed the Lie subgroups of Spin(9, 1) that leave some Majorana-

Weyl spinors invariant. Here we shall provide an argument to show that the list in the

introduction is complete. This is essentially a Lie algebra computation. There are two

additional cases that occur in the type I backgrounds in addition to those that have not

been investigated in [28].

There is a single type of orbit of Spin(9, 1) in Majorana-Weyl representation S+ of

co-dimension zero and a representative is 1 + e1234, see [27, 28]. Two spinors are invariant
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either under the subgroup SU(4) ⋉ R8 or G2. The representative of the second spinor [28]

can be chosen as i(1 − e1234) or e15 + e2345, respectively.

To proceed, we decompose S+ under the action of SU(4), as16 S+ = (C < 1 >)R ⊕
ReΛ2(C4)⊕(Λ1(C4))R, where we have chosen a 1 as representative for the first two invariant

spinors to make the analysis more transparent. There is an orbit of co-dimension one of

SU(4) in ReΛ2(C4) with stability stability subgroup Sp(2). In addition under the action

of Sp(2), S+ decomposes as S+ = (C < 1 >)R ⊕ R < i(e12 + e34) > ⊕Λ1(R5) ⊕ H2, thus

there are only three Sp(2) ⋉ R8-invariant spinors. SU(4) has an orbit of co-dimension 2 in

(Λ1(C4))R with stability subgroup SU(3). However this case can be thought of descending

from G2 and so it will be investigated later.

To investigate the case of four invariant spinors, Sp(2) = Spin(5) acts with the vector

representation on Λ1(R5) ⊂ S+. So there is a single orbit with stability subgroup SU(2)×
SU(2). In addition under SU(2) × SU(2), S+ decomposes as S+ = (C < 1, e12 >)R ⊕ H ⊕
(C2 ⊕ C2)R, thus there are only four (SU(2) × SU(2)) ⋉ R8-invariant spinors. A key point

is that SU(2)×SU(2) acts on H with the left and right multiplication by unit quaternions,

i.e.

x → axb̄ , x ∈ H , a ∈ SU(2) , b ∈ SU(2) . (B.1)

Sp(2) has also an orbit in H2 with stability subgroup Sp(1) but this can also be thought

of as the descending from the G2 case and it will be investigated later.

Next SU(2) × SU(2) has a single orbit in H with stability subgroup SU(2), SU(2) ⊂
SU(2)×SU(2) is the diagonal subgroup. This case has not been consider in [28]. Moreover

under this SU(2), S+ decomposes as S+ = (C < 1, e12 >)R ⊕ R < e13 + e24 > ⊕ImH ⊕
(C2)R⊕(C2)R, where SU(2) acts on both copies of C2 with the fundamental representation.

Thus SU(2) ⋉ R8 leaves invariant five spinors in S+. Moreover there three types of orbits

of SU(2) × SU(2) in (C2 ⊕ C2)R. Two of those have SU(2) stability subgroup. These two

cases can be thought of descending from the G2 case and they will be investigated later.

The third type has trivial stability subgroup and so there are no more invariant spinors.

To proceed, observe that SU(2) ⊂ SU(2) × SU(2) acting as (B.1), for a = b, on

ImH has a orbit of codimension one which has stability subgroup U(1). In addition S+

decomposes under U(1) as S = (C < 1, e12, e13 >)R⊕4(C)R, where U(1) acts on C with the

fundamental representation. Thus there are six U(1) ⋉ R8-invariant spinors. In addition,

the orbits of SU(2) in ⊕2(C2)R have stability subgroup {1} in Spin(9, 1). Thus there are

no more invariant spinors. This concludes the cases with non-compact stability subgroups.

Next let us consider the descendants of G2. The G2 decomposition of S+ is S+ = R <

1 + e1234 > ⊕R < e15 + e2345 > ⊕Λ1(R7) ⊕ Λ1(R7). In addition G2 has a single orbit in

Λ1(R7) of co-dimension one which has stability subgroup SU(3). Moreover S+ under SU(3)

decomposes as S+ = (C < 1, e15 >)R⊕ (Λ2(C3))R⊕ (Λ1(C3))R, thus there are four SU(3)-

invariant spinors. In either (Λ2(C3))R or (Λ1(C3))R, SU(3) acts with stability subgroup

SU(2). In addition, S+ decomposes under SU(2) as S+ = (C < 1, e15, e12, e25 >)R⊕2(C2)R.

16With VR we denote the associated real representation of a complex representation, i.e. (C < 1 >)R =

R < (1 + e1234, i(1 − e1234) >.
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Thus there are eight SU(2)-invariant spinors. Moreover, the orbits of SU(2) in ⊕2(C2)R
have stability subgroup {1}. So there are no other cases to investigate. This concludes the

analysis.

C. SO(3) transformations

The first three SU(2)-invariant Killing spinors are given by 1 + e1234, e15 + e2345 and

i(1 − e1234) + e25 − e1345. Therefore the fourth Killing spinor is spanned by the following

basis elements:

λ1 = i(1 − e1234) − e25 + e1345 , λ2 = i(e15 − e2345 , λ3 = i(e25 + e1345) ,

λ4 = e12 − e34 , λ5 = i(e12 + e34) . (C.1)

The action of the generators ti of SO(3) on these is given by (omitting terms proportional

to the first three Killing spinors, i.e. restricting to P/K as discussed in the text)

t1(λ1) = −2λ5 , t2(λ1) = 2λ3 , t3(λ1) = 2(λ2 + λ4) ,

t1(λ2) = −2λ3 , t2(λ2) = 0 , t3(λ2) = −λ1 ,

t1(λ3) = 2λ2 − λ4 , t2(λ3) = −1
2λ1 , t3(λ3) = −λ5 ,

t1(λ4) = 0 , t2(λ4) = −2λ5 , t3(λ4) = −λ1 ,

t1(λ5) = 1
2λ1 , t2(λ5) = −λ2 + 2λ4 , t3(λ5) = λ3 . (C.2)

One can also see explicitly that the λ’s constitute the symmetric traceless representation

of SO(3). Define the matrix

M =







2λ4 λ1 2λ5

λ1 −2λ2 −2λ3

2λ5 −2λ3 2λ2 − 2λ4






. (C.3)

The transformation (C.2) corresponds to

ti(M) = Mti − tiM , (C.4)

with the generators given by

t1 =







0 0 0

0 0 1

0 −1 0






, t2 =







0 0 1

0 0 0

−1 0 0






, t3 =







0 1 0

−1 0 0

0 0 0






. (C.5)

From these formulae it is clear that while the first three Killing spinors transform in the

fundamental representation of SO(3), the remaining five basis elements form the symmetric

traceless representation.
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D. Null spinor bilinears

The spinor bilinear vectors for the extra two basis elements e13 and e24 are given by

κ(e13, e24) = (e0 − e5) , (D.1)

and other combinations vanishing. Similarly, the non-vanishing bilinear three-forms are

given by

ξ(1, e13) = −(e0 − e5) ∧ (e2 + ie7) ∧ (e4 + ie9) ,

ξ(e1234, e13) = −(e0 − e5) ∧ (e1 − ie6) ∧ (e3 − ie8) ,

ξ(e12, e13) = −(e0 − e5) ∧ (e1 − ie6) ∧ (e4 + ie9) ,

ξ(e24, e13) = −i(e0 − e5) ∧ (ω1 − ω2) ,

ξ(e34, e13) = −(e0 − e5) ∧ (e2 + ie7) ∧ (e3 − ie8) ,

ξ(1, e24) = −(e0 − e5) ∧ (e1 + ie6) ∧ (e3 + ie8) ,

ξ(e1234, e24) = −(e0 − e5) ∧ (e2 − ie7) ∧ (e4 − ie9) ,

ξ(e12, e24) = (e0 − e5) ∧ (e2 − ie7) ∧ (e3 + ie8) ,

ξ(e34, e24) = (e0 − e5) ∧ (e1 + ie6) ∧ (e4 − ie9) . (D.2)

Finally, the non-vanishing bilinear five-forms are

τ(1, e13) = i(e0 − e5) ∧ (e2 + ie7) ∧ (e4 + ie9) ∧ ω1 ,

τ(e1234, e13) = −i(e0 − e5) ∧ (e1 − ie6) ∧ (e3 − ie8) ∧ ω2 ,

τ(e12, e13) = −i(e0 − e5) ∧ (e1 − ie6) ∧ (e4 + ie9) ∧ (e2 ∧ e7 − e3 ∧ e8) ,

τ(e13, e13) = (e0 − e5) ∧ (e1 − ie6) ∧ (e2 + ie7) ∧ (e3 − ie8) ∧ (e4 + ie9) ,

τ(e24, e13) = −1
2(e0 − e5) ∧ (ω1 − ω2) ∧ (ω1 − ω2) ,

τ(e34, e13) = i(e0 − e5) ∧ (e2 + ie7) ∧ (e3 − ie8) ∧ (e1 ∧ e6 − e4 ∧ e9) ,

τ(1, e24) = i(e0 − e5) ∧ (e1 + ie6) ∧ (e3 + ie8) ∧ ω2 ,

τ(e1234, e24) = −i(e0 − e5) ∧ (e2 − ie7) ∧ (e4 − ie9) ∧ ω1 ,

τ(e12, e24) = i(e0 − e5) ∧ (e2 − ie7) ∧ (e3 + ie8) ∧ (e1 ∧ e6 − e4 ∧ e9) ,

τ(e24, e24) = (e0 − e5) ∧ (e1 + ie6) ∧ (e2 − ie7) ∧ (e3 + ie8) ∧ (e4 − ie9) ,

τ(e34, e24) = −i(e0 − e5) ∧ (e1 + ie6) ∧ (e4 − ie9) ∧ (e2 ∧ e7 − e3 ∧ e8) . (D.3)

Here we have used the following definitions

ω1 = e1 ∧ e6 + e3 ∧ e8 , ω2 = e2 ∧ e7 + e4 ∧ e9 , (D.4)

for the two-forms.

From these expressions one can derive the inner products for the null Majorana spinors,

which are

ǫ1 = 1 + e1234 , ǫ2 = i(1 − e1234) ,

ǫ3 = e12 − e34 , ǫ4 = i(e12 + e34) ,

ǫ5 = e13 + e24 , ǫ6 = i(e13 − e24) . (D.5)
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In the Majorana basis of spinors, the bilinear vectors read

κ(ǫ5, ǫ5) = 2(e0 − e5) ,

κ(ǫ6, ǫ6) = 2(e0 − e5) . (D.6)

The bilinear three-forms are given by

ξ(ǫ1, ǫ5) = −2(e0 − e5) ∧ (e2 ∧ e4 − e7 ∧ e9 + e1 ∧ e3 − e6 ∧ e8) ,

ξ(ǫ1, ǫ6) = −2(e0 − e5) ∧ (−e2 ∧ e9 + e4 ∧ e7 + e1 ∧ e8 − e3 ∧ e6) ,

ξ(ǫ2, ǫ5) = −2(e0 − e5) ∧ (−e2 ∧ e9 + e4 ∧ e7 − e1 ∧ e8 + e3 ∧ e6) ,

ξ(ǫ2, ǫ6) = 2(e0 − e5) ∧ (e2 ∧ e4 − e7 ∧ e9 − e1 ∧ e3 + e6 ∧ e8) ,

ξ(ǫ3, ǫ5) = −2(e0 − e5) ∧ (e1 ∧ e4 + e6 ∧ e9 − e2 ∧ e3 − e7 ∧ e8) ,

ξ(ǫ3, ǫ6) = −2(e0 − e5) ∧ (−e1 ∧ e9 − e4 ∧ e6 − e2 ∧ e8 − e3 ∧ e7) ,

ξ(ǫ4, ǫ5) = −2(e0 − e5) ∧ (−e1 ∧ e9 − e4 ∧ e6 + e2 ∧ e8 + e3 ∧ e7) ,

ξ(ǫ4, ǫ6) = 2(e0 − e5) ∧ (e1 ∧ e4 + e6 ∧ e9 + e2 ∧ e3 + e7 ∧ e8) ,

ξ(ǫ5, ǫ6) = 2(e0 − e5) ∧ (ω1 − ω2) . (D.7)

Finally, the five-forms are

τ(ǫi, ǫ5) = −ξ(ǫi, ǫ6) ∧ (ω1 − ω2) , i = 1, . . . , 4,

τ(ǫi, ǫ6) = ξ(ǫi, ǫ5) ∧ (ω1 − ω2) , i = 1, . . . , 4,

τ(ǫ5, ǫ5) = −(e0 − e5) ∧ (ω1 − ω2) ∧ (ω1 − ω2) + 2(e0 − e5) ∧ Re(χ) ,

τ(ǫ5, ǫ6) = −2(e0 − e5) ∧ Im(χ) ,

τ(ǫ6, ǫ6) = −(e0 − e5) ∧ (ω1 − ω2) ∧ (ω1 − ω2) − 2(e0 − e5) ∧ Re(χ) , (D.8)

where we have used

χ = (e1 − ie6) ∧ (e2 + ie7) ∧ (e3 − ie8) ∧ (e4 + ie9) . (D.9)
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